Keywords and phrases: Casson fluid, heat source, chemical reaction, Cattaneo-Christov model, Thompson and Troian slip, bvp4c
Received: September 28, 2024; Revised: November 29, 2024; Accepted: January 18, 2025; Published: June 9, 2025
How to cite this article: Ch. Suresh Kumar, P. R. Sobhana Babu, K. Sreenivasulu, Syed Abdul Khadar Jilani, T. D. R. Krishna and D. Srinivasa Rao, Cattaneo-Christov model for Casson fluid with inclined magnetic field in presence of melting over a stretching cylinder, JP Journal of Heat and Mass Transfer 38(3) (2025), 457-484. https://doi.org/10.17654/0973576325023
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References [1] N. Casson, Flow equation for pigment-oil suspensions of the printing ink type, pp. 84-104, Rheology of Disperse Systems, ed. C.C. Mill, Pergamon Press, NY, 1959. [2] R. Mahesh, U. S. Mahabaleshwar, E. H. Aly and O. Manca, An impact of CNTs on an MHD Casson Marangoni boundary layer flow over a porous medium with suction/injection and thermal radiation, International Communications in Heat and Mass Transfer 141 (2023), 106561. [3] B. P. Reddy, O. D. Makinde and A. Hugo, A computational study on diffusion-thermo and rotation effects on heat generated mixed convection flow of MHD Casson fluid past an oscillating porous plate, International Communications in Heat and Mass Transfer 138 (2022), 106389. [4] M. Hussain, U. Farooq and M. Sheremet, Nonsimilar convective thermal transport analysis of EMHD stagnation Casson nanofluid flow subjected to particle shape factor and thermal radiations, International Communications in Heat and Mass Transfer 137 (2022), 106230. [5] P. B. A. Reddy, B. Mallikarjuna and K. M. S. Reddy, Slip effect on heat and mass transfer in Casson fluid with Cattaneo-Christove heat flux model, Front Heat Mass Transf. 11(1) (2018), 1-10. [6] T. Hayat, R. Riaz, A. Aziz and A. Alsaedi, Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions, Physica A: Statistical Mechanics and its Applications 549 (2020), 124006. [7] M. T. Dinh, I. Tlili, R. N. Dara, A. Shafee, Y. Y. Y. Al-Jahmany and T. Nguyen-Thoi, Nanomaterial treatment due to imposing MHD flow considering melting surface heat transfer, Physica A: Statistical Mechanics and its Applications 541 (2020), 123036. [8] L. Nagaraju, K. Naikoti and M. V. Krishna, Chemical reaction and Soret effects on MHD convective flow of second grade fluid through an absorbent medium with ramped wall temperature as well as ramped surface concentration, Journal of the Indian Chemical Society 100(1) (2023), 100818. [9] N. Abbas and W. Shatanawi, Theoretical survey of time-dependent micropolar nanofluid flow over a linear curved stretching surface, Symmetry 14(8) (2022), 1629. [10] N. Abbas, K. U. Rehman, W. Shatanawi and K. Abodayeh, Mathematical model of temperature-dependent flow of power-law nanofluid over a variable stretching Riga sheet, Waves in Random and Complex Media (2022), 1-18. [11] Y. Suresh Kumar, S. Hussain, K. Raghunath, F. Ali, K. Guedri, S. M. Eldin and M. I. Khan, Numerical analysis of magnetohydrodynamics Casson nanofluid flow with activation energy, Hall current and thermal radiation, Scientific Reports 13(1) (2023), 4021. [12] T. Q. Tang, M. Rooman, Z. Shah, S. Khan, N. Vrinceanu, A. Alshehri and M. Racheriu, Numerical study of magnetized Powell-Eyring hybrid nanomaterial flow with variable heat transfer in the presence of artificial bacteria: Applications for tumor removal and cancer cell destruction, Frontiers in Materials 10 (2023), 1144854. [13] U. S. Mahabaleshwar, T. Maranna, L. M. Perez and S. R. Nayakar, An effect of magnetohydrodynamic and radiation on axisymmetric flow of non-Newtonian fluid past a porous shrinking/stretching surface, Journal of Magnetism and Magnetic Materials 571 (2023), 170538. [14] L. A. Lund, Z. Omar, I. Khan, D. Baleanu and K. S. Nisar, Convective effect on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a vertical exponentially stretching/shrinking surface: Triple solutions, Symmetry 12(8) (2020), 1238. [15] K. Raghunath, N. Gulle, R. R. Vaddemani and O. Mopuri, Unsteady MHD fluid flow past an inclined vertical porous plate in the presence of chemical reaction with aligned magnetic field, radiation, and Soret effects, Heat Transfer 51(3) (2022), 2742-2760. [16] D. Kumar and A. K. Singh, Effects of heat source/sink and induced magnetic field on natural convective flow in vertical concentric annuli, Alexandria Engineering Journal 55(4) (2016), 3125-3133. [17] R. C. Bataller, Effects of heat source/sink, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a stretching sheet, Computers and Mathematics with Applications 53(2) (2007), 305-316. [18] D. Reddy and Y. B. ShankarGoud, Heat source effect on MHD fluid flow over a moving vertical plate in the presence of chemical reaction with convective surface boundary conditions, J. Eng. Comput. Architect. 10 (2020), 38-46. [19] P. A. Thompson and S. M. Troian, A general boundary condition for liquid flow at solid surfaces, Nature 389(6649) (1997), 360-362. [20] H. Power, J. Soavi, P. Kantachuvesiri and C. Nieto, The effect of Thompson and Troian’s nonlinear slip condition on Couette flows between concentric rotating cylinders, Zeitschrift für angewandte Mathematik und Physik 66 (2015), 2703-2718. [21] Z. Abbas, M. Sheikh, J. Hasnain, H. Ayaz and A. Nadeem, Numerical aspects of Thomson and Troian boundary conditions in a Tiwari-Das nanofluid model with homogeneous-heterogeneous reactions, Physica Scripta 94(11) (2019), 115220. [22] S. Nadeem, S. Ahmad and M. N. Khan, Mixed convection flow of hybrid nanoparticle along a Riga surface with Thomson and Troian slip condition, Journal of Thermal Analysis and Calorimetry 143 (2021), 2099-2109. [23] S. Li, V. Puneeth, A. M. Saeed, A. Singhal, F. A. Al-Yarimi, M. I. Khan and S. M. Eldin, Analysis of the Thomson and Troian velocity slip for the flow of ternary nanofluid past a stretching sheet, Scientific Reports 13(1) (2023), 2340. [24] Y. C. Yen and C. Tien, Laminar heat transfer over a melting plate, the modified Leveque problem, Journal of Geophysical Research 68(12) (1963), 3673-3678. [25] M. Epstein and D. H. Cho, Melting heat transfer in steady laminar flow over a flat plate, Journal of Heat Transfer 98(3) (1976), 531-533. [26] N. Bachok, A. Ishak and I. Pop, Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet, Physics Letters A 374(40) (2010), 4075-4079. [27] Y. Q. Song, H. Waqas, K. Al-Khaled, U. Farooq, S. U. Khan, M. I. Khan and S. Qayyum, Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: A Marangoni and solutal model, Alexandria Engineering Journal 60(5) (2021), 4663-4675. [28] M. Gnaneswara Reddy, R. J. Punith Gowda, R. Naveen Kumar, B. C. Prasannakumara and K. Ganesh Kumar, Analysis of modified Fourier law and melting heat transfer in a flow involving carbon nanotubes, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 235(5) (2021), 1259-1268. [29] M. Imran, Z. Abbas, M. Naveed and N. Salamat, Impact of Joule heating and melting on time-dependent flow of nanoparticles due to an oscillatory stretchable curved wall, Alexandria Engineering Journal 60(4) (2021), 4097-4113. [30] K. Singh, A. K. Pandey and M. Kumar, Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method, Propulsion and Power Research 10(2) (2021), 194-207. [31] K. Muhammad, T. Hayat and A. Alsaedi, Numerical study for melting heat in dissipative flow of hybrid nanofluid over a variable thicked surface, International Communications in Heat and Mass Transfer 121 (2021), 104805. [32] S. A. Khan, T. Hayat, A. Alsaedi and B. Ahmad, Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis, Renewable and Sustainable Energy Reviews 140 (2021), 110739. [33] A. Majeed, T. Javed, A. Ghaffari and M. M. Rashidi, Analysis of heat transfer due to stretching cylinder with partial slip and prescribed heat flux: a Chebyshev spectral Newton iterative scheme, Alexandria Engineering Journal 54(4) (2015), 1029-1036. [34] N. Bachok and A. Ishak, Flow and heat transfer over a stretching cylinder with prescribed surface heat flux, Malaysian Journal of Mathematical Sciences 4(2) (2010), 159-169. [35] T. Fang, J. Zhang and S. Yao, Slip MHD viscous flow over a stretching sheet-an exact solution, Communications in Nonlinear Science and Numerical Simulation 14(11) (2009), 3731-3737. [36] M. Tamoor, M. Waqas, M. I. Khan, A. Alsaedi and T. Hayat, Magnetohydrodynamic flow of Casson fluid over a stretching cylinder, Results in Physics 7 (2017), 498-502. [37] D. V. N. S. R. Murthy, P. S. Babu and C. Srinivasulu, Cattaneo-Christov model for mixed convective radiative flow of Casson fluid with joule heating in the presence of chemical reaction over a stretching cylinder, JP Journal of Heat and Mass Transfer 34 (2023), 153-181. [38] C. Y. Wang, Free convection on a vertical stretching surface, ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 69(11) (1989), 418-420. [39] R. S. Reddy Gorla and I. Sidawi, Free convection on a vertical stretching surface with suction and blowing, Applied Scientific Research 52 (1994), 247-257. |