Keywords and phrases: Maxwell fluid, MHD, nanofluid, Darcy-Forchheimer, cross-diffusion, chemical reaction, thermal radiation
Received: November 21, 2024; Accepted: April 5, 2025; Published: June 9, 2025
How to cite this article: G. Gangadhar, K. Sharath Babu, V. Srinivasa Kumar and Diganta Bordoloi, Unsteady MHD Darcy-Forchheimer flow of Maxwell nanofluid past a stretching sheet with cross-diffusion, viscous dissipation, and Joule heating, JP Journal of Heat and Mass Transfer 38(3) (2025), 395-426. https://doi.org/10.17654/0973576325020
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References [1] M. Subhas Abel, J. V. Tawade and M. M. Nandeppanavar, MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet, Meccanica 47 (2012), 385-393. [2] A. M. Megahed, Improvement of heat transfer mechanism through a Maxwell fluid flow over a stretching sheet embedded in a porous medium and convectively heated, Math. Comput. Simulation 187 (2021), 97-109. [3] K. Ali Khan, A. R. Seadawy and A. Jhangeer, Numerical appraisal under the influence of the time dependent Maxwell fluid flow over a stretching sheet, Math. Methods Appl. Sci. 44(7) (2021), 5265-5279. [4] N. Abbas, W. Shatanawi, F. Hasan and Z. Mustafa, Thermodynamic flow of radiative induced magneto modified Maxwell Sutterby fluid model at stretching sheet/cylinder, Scientific Reports 13(1) (2023), 16002. [5] I. C. Mandal, S. Mukhopadhyay and M. S. Mandal, MHD mixed convective Maxwell liquid flow passing an unsteady stretched sheet, Partial Differential Equations in Applied Mathematics 9 (2024), 100644. [6] Damodara Reddy Annapureddy, Sarada Devi Puliyeddula, Nagaraju Vellanki and Kalyan Kumar Palaparthi, Heat and mass transfer in unsteady radiating MHD flow of a Maxwell fluid with a porous vertically stretching sheet in the presence of activation energy and thermal diffusion effects, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 115(2) (2024), 158-177. https://doi.org/10.37934/arfmts.115.2.158177. [7] D. Pal and H. Mondal, Hydromagnetic convective diffusion of species in Darcy-Forchheimer porous medium with non-uniform heat source/sink and variable viscosity, Int. Commun. Heat Mass Transf. 39(7) (2012), 913-917. [8] N. V. Ganesh, A. A. Hakeem and B. Ganga, Darcy-Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects, Ain. Shams Eng. J. 9(4) (2016), 939-951. [9] A. S. Alshomrani and M. Z. Ullah, Effects of homogeneous-heterogeneous reactions and convective condition in Darcy-Forchheimer flow of carbon nanotubes, J. Heat Transfer 141(1) (2019), 012405. [10] R. S. Saif, T. Hayat, R. Ellahi, T. Muhammad and A. Alsaedi, Darcy-Forchheimer flow of nanofluid due to a curved stretching surface, International Journal of Numerical Methods for Heat and Fluid Flow 29 (2019), 2-20. [11] S. Rashid, M. I. Khan, T. Hayat, M. Ayub and A. Alsaedi, Darcy-Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface, Applied Nanoscience 10 (2020), 2965-2975. [12] A. Q. Khan and A. Rasheed, Numerical simulation of fractional Maxwell fluid flow through Forchheimer medium, International Communications in Heat and Mass Transfer 119 (2020), 104872. [13] Y. M. Li, I. Ullah, M. M. Alam, H. Khan and A. Aziz, Lorentz force and Darcy-Forchheimer effects on the convective flow of non-Newtonian fluid with chemical aspects, Waves in Random and Complex Media (2022), 1-15. [14] M. Jawad et al., Numerical simulation of chemically reacting Darcy-Forchheimer flow of Buongiorno Maxwell fluid with Arrhenius energy in the appearance of nanoparticles, Case Studies in Thermal Engineering 50 (2023), 103413. [15] L. Zhang, R. R. Vaddemani, A. Ganjikunta, S. Bingi and R. Kodi, 3D-MHD mixed convection in a Darcy-Forchheimer Maxwell fluid: thermo diffusion, diffusion-thermo effects, and activation energy influence, Case Studies in Thermal Engineering 61 (2024), 104916. [16] G. Rasool, A. Shafiq and D. Baleanu, Consequences of Soret-Dufour effects, thermal radiation, and binary chemical reaction on Darcy Forchheimer flow of nanofluids, Symmetry 12(9) (2020), 1421. [17] C. G. N. Ketchate, P. T. Kapen, D. Fokwa and G. Tchuen, Instability of MHD mixed convection flow of nanofluid in porous channel with thermal radiation, chemical reaction, Dufour and Soret effects, Chinese J. Phys. 87 (2024), 728-750. [18] A. Paul, J. M. Nath and T. K. Das, Thermally stratified Cu-Al2O3/water hybrid nanofluid flow with the impact of an inclined magnetic field, viscous dissipation and heat source/sink across a vertically stretching cylinder, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik 104(2) (2024), e202300084. [19] A. Paul and J. M. Nath, Magneto-hydrodynamic stagnation point flow of Casson Williamson hybrid nanofluid incorporating viscous dissipation and suction/injection effect past an exponentially stretching cylinder, Journal of Nanofluids 13(3) (2024), 710-720. [20] M. Jawad, A. Saeed, A. Khan, I. Ali, H. Alrabaiah, T. Gul, E. Bonyah and M. Zubair, Analytical study of MHD mixed convection flow for Maxwell nanofluid with variable thermal conductivity and Soret and Dufour effects, AIP advances, 11(3) (2021), 035215 . [21] N. Venkatesh, R. Srinivasa Raju, M. Anil Kumar and C. Vijayabhaskar, Heat and mass transfer in Maxwell fluid with nanoparticles past a stretching sheet in the existence of thermal radiation and chemical reaction, International Journal of Modelling and Simulation (2023), 1-14. [22] Z. H. Khan, W. A. Khan, S. M. Ibrahim, K. Swain and Z. Huang, Impact of multiple slips and thermal radiation on heat and mass transfer in MHD Maxwell hybrid nanofluid flow over porous stretching sheet, Case Studies in Thermal Engineering 61 (2024), 104906. [23] M. Vinodkumar Reddy, P. Lakshminarayana and K. Vajravelu, Magnetohydrodynamic radiative flow of a Maxwell fluid on an expanding surface with the effects of Dufour and Soret and chemical reaction, Computational Thermal Sciences 12(4) (2020), 317-327. [24] M. V. Reddy and P. Lakshminarayana, Cross-diffusion and heat source effects on a three-dimensional MHD flow of Maxwell nanofluid over a stretching surface with chemical reaction, The European Physical Journal Special Topics 230 (2021), 1371-1379. [25] Maatoug, K. Samah, K. Hari Babu, V. V. L. Deepthi, K. Ghachem, K. Raghunath, G. Charankumar and Sami Ullah Khan, Variable chemical species and thermo-diffusion Darcy-Forchheimer squeezed flow of Jeffrey nanofluid in horizontal channel with viscous dissipation effects, Journal of the Indian Chemical Society 100(1) (2023), 100831. https://doi.org/10.1016/j.jics.2022.100831. [26] G. Aruna, K. Hari Babu, B. Venkateswarlu and K. Raghunath, An unsteady MHD flow of a second-grade fluid passing through a porous medium in the presence of radiation absorption exhibits Hall and ion slip effects, Heat Transfer 52 (2023), 780-806. https://doi.org/10.1002/htj.22716. [27] V. V. L. Deepthi, Maha M. A. Lashin, N. Ravi Kumar, K. Raghunath, Farhan Ali, Mowffaq Oreijah, Kamel Guedri, El Sayed Mohamed Tag-ElDin, M. Ijaz Khan and Ahmed M. Galal, Recent development of heat and mass transport in the presence of Hall, ion slip and thermo diffusion in radiative second grade material: application of micromachines, Micromachines 13(10) (2022), 1566.
|