Keywords and phrases: temperature, transmission wavelengths, modified TFBG, surface plasmon resonance, sensing applications
Received: November 19, 2024; Accepted: February 11, 2025; Published: June 9, 2025
How to cite this article: Elaf M. Al-Awadi, Qussay Mohammed Salman and Anwaar A. Al-Dergazly, The effect of temperature on transmission wavelengths of modified TFBG based on surface plasmon resonance, JP Journal of Heat and Mass Transfer 38(3) (2025), 369-381. https://doi.org/10.17654/0973576325018
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References [1] Koji Yuhashi, Junichi Ida, Shoichi Kubodera, Kazuhiro Watanabe and Michiko Nishiyama, A surface plasmon resonance temperature sensor using TiO2 nanoparticles on hetero-core fiber optic structure with Au thin film, Japanese Journal of Applied Physics (2022). doi: 10.35848/1347-4065/ac5d23. [2] Triranjita Srivastava, Ritwick Das and Rajan Jha, Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide, Plasmonics 8 (2013). doi: 10.1007/S11468-012-9421-X. [3] Li-Yang Shao, Yanina Shevchenko and Jacques Albert, Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors, Optics Express 18 (2010), 11464-11471. doi: 10.1364/OE.18.011464. [4] Zongda Zhu, Lu Liu, Zhihai Liu, Yu Zhang and Yaxun Zhang, Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit, Optics Letters 42 (2017), 2948-2951. doi: 10.1364/OL.42.002948. [5] Jiajun Xue, Yaxun Zhang, Wei Liu, Yu Jing Zhang, Song Li, Zhihai Liu, Jianzhong Zhang, Bin Lai and Libo Yuan, Ultrahigh-sensitivity SPR fiber temperature sensor based Ge2Sb2Te5 and cyclohexane, Sensors and Actuators A-Physical (2022), pages. doi: 10.1016/j.sna.2022.113786. [6] Guowen An, Lei Liu, Pu Hu, Pinggang Jia, Feng Zhu, Yanjun Zhang, Jia Liu and Jijun Xiong, Probe type TFBG-excited SPR fiber sensor for simultaneous measurement of multiple ocean parameters assisted by CFBG, Optics Express (2023). doi: 10.1364/oe.481948. [7] Fu Ji, Jingjing Hu, Yiying Gu, Yang Zhang and Jiali Zhang, High sensitive TFBG sensing demodulation scheme based on microwave photonic interrogation, (2023). doi: 10.1117/12.2656279. [8] Grzegorz Kozieł, Damian Harasim, Marta Dziuba-Kozieł and Piotr Kisała, Fourier transform usage to analyse data of polarisation plane rotation measurement with a TFBG sensor, Metrology and Measurement Systems (2024). doi: 10.24425/mms.2024.149698. [9] Luigi Fazzi, Giacomo Struzziero, Clemens Dransfeld and Roger M. Groves, A single three-parameter tilted fibre Bragg grating sensor to monitor the thermosetting composite curing process, Advanced Manufacturing (2022). doi: 10.1080/20550340.2022.2041221. [10] Egor I. Dolzhenko, Kirill A. Tomyshev, Oleg V. Butov, TFBG-assisted fiber optic sensors for environmental monitoring, 2021. doi: 10.1117/12.2589226. [11] R. Baker, L. Zhang and A. D. Kersey, Thermal characteristics of fiber Bragg gratings: a comprehensive review, Optics Letters 46(3) (2021), 601-604. [12] A. Foroughi, F. Davar and H. Elahi, The impact of temperature on the characteristics of FBG sensors: A novel approach, Journal of Sensors (2020), 1-10. [13] Z. He, Y. Chen and Y. Jiang, High-sensitivity temperature sensor based on TFBG with an SPR structure, Sensors and Actuators B: Chemical 190 (2014), 908-914. [14] Y. Huang, D. Xu and H. Chen, An upgraded approach for analyzing wavelength shift in fiber optic sensors, IEEE Access 7 (2019), 140024-140031. [15] M. A. Khan, K. Kant and M. M. Baig, Characterization of gold thin films for plasmonic applications: A review, Materials Today: Proceedings 4(2) (2017), 2960-2968. [16] A. D. Kersey, W. F. Gogan and C. Mendez, Fiber grating sensors, Journal of Light Wave Technology 18(2) (2000), 215-227. [17] R. Li, Y. Zhan and X. Gu, An experimental study on fiber optic temperature sensors based on TFBGs, Measurement Science and Technology 22(10) (2011), 105105. [18] A. Mishra, S. Das and S. Khatua, Enhanced sensitivity of optical sensors: statistical analysis and applications, Light: Science and Applications 7(1) (2018), 1-8. [19] Qiang Liu, Shuguang Li, Hailiang Chen, Jianshe Li and Zhenkai Fan, High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film, Applied Physics Express (2015). doi: 10.7567/APEX.8.046701. [20] Md. Aslam Mollah, S. M. Riazul Islam, Md. Yousufali, Lway Faisal Abdulrazak, Mb. Biplob Hossain and Iraj Sadegh Amiri, Plasmonic temperature sensor using D-shaped photonic crystal fiber, Results in Physics (2020). doi: 10.1016/J.RINP.2020.102966. [21] Yang Zhao, Tonglei Cheng, Rao Fu, Luo Wei, Haihui Li and Xin Yan, A novel surface plasmon resonance sensor sensitivity enhancement method for temperature measurement by depositing tungsten disulfide nanosheets on the silver film, Photonics and Nanostructures: Fundamentals and Applications (2023). doi: 10.1016/j.photonics.2023.101156. [22] Maurice C. G. Aalders, Roelof-Jan Oostra and Tristan Krap, Temperature-specific spectral shift of luminescing thermally altered human remains, International Journal of Legal Medicine (2023). doi: 10.1007/s00414-023-03006-0. [23] Xiao Du, Jie Guo, Wei Wang, Di Sun, Yongxi Gao and Xiaoyan Liang, Wavelength shift with a diode-pumped continuous-wave Yb: CALGO laser, Applied Optics, (2020). doi: 10.1364/AO.385337. [24] Santosh Chackrabarti, Dhrub Sharma, Shereena Joseph, Thoalfiqar A. Zaker, Aurangzeb Khurram and Hafiz Ram Kafle, Experimental study on the mechanism governing spectral shifts in low power 670 nm AlGaInP multiple quantum well (MQW) laser diodes over temperature range 5-45°C, Canadian Journal of Physics (2016). doi: 10.1139/CJP-2015-0588. [25] Fei Gao, Yong, Kong, XiaoLi Zhao, Keke Song, Xiangkai Zhao and Mingming Shen, The temperature effect on the transmission spectrum of the quartz optical rotation filter, Optics and Spectroscopy (2014). doi: 10.1134/S0030400X14020064. [26] Liping Zhang and Yong Kong, Research on temperature characteristics of liquid crystal filter, Optik (2014). doi: 10.1016/J.IJLEO.2013.07.156. [27] Becerra Jorge, Design optimization and characterization of optical imaging systems for complex temperature environment, 2023. doi: 10.1007/978-981-19-9512-5_36. [28] Scott R. Hammond, Kevin M. O’Malley, Hua-Yun Xu, Delwin L. Elder, Lewis E. Johnson, Organic electro-optic materials combining extraordinary nonlinearity with exceptional stability to enable commercial applications, 2022. doi: 10.1117/12.2622099. |