Keywords and phrases: melting heat, Joule heating, inclined magnetic field, viscous dissipation, Thompson and Troian slip
Received: September 30, 2024; Revised: January 15, 2025; Accepted: February 19, 2025; Published: June 9, 2025
How to cite this article: K. Sreenivasulu, P. R. Sobhana Babu, Syed Abdul Khadar Jilani, Ch. Suresh Kumar, D. Srinivasa Rao and G. Prakash, Impression of radiation on the flow of Williamson hybrid nanofluid with shape factors and entropy generation, JP Journal of Heat and Mass Transfer 38(3) (2025), 341-368. https://doi.org/10.17654/0973576325017
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License  
References:
[1] Y. B. Kho, A. Hussanan, M. K. A. Mohamed and M. Z. Salleh, Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips: Buongiorno model, Propulsion and Power Research 8(3) (2019), 243-252. [2] S. Nadeem, S. T. Hussain and C. Lee, Flow of a Williamson fluid over a stretching sheet, Brazilian Journal of Chemical Engineering 30 (2013), 619-625. [3] T. Srinivasulu and B. S. Goud, Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet, Case Studies in Thermal Engineering 23 (2021), 100819. [4] Z. Shah, E. Bonyah, S. Islam, W. Khan and M. Ishaq, Radiative MHD thin film flow of Williamson fluid over an unsteady permeable stretching sheet, Heliyon 4(10) (2018), 1-20. [5] Y. D. Reddy, F. Mebarek-Oudina, B. S. Goud and A. I. Ismail, Radiation, velocity and thermal slips effect toward MHD boundary layer flow through heat and mass transport of Williamson nanofluid with porous medium, Arabian Journal for Science and Engineering 47(12) (2022), 16355-16369. [6] M. S. Dada and C. Onwubuoya, Variable viscosity and thermal conductivity effects on Williamson fluid flow over a slendering stretching sheet, World Journal of Engineering 17(3) (2020), 357-371. [7] A. Shafiq and T. N. Sindhu, Statistical study of hydromagnetic boundary layer flow of Williamson fluid regarding a radiative surface, Results in Physics 7 (2017), 3059-3067. [8] H. M. Shawky, N. T. Eldabe, K. A. Kamel and E. A. Abd-Aziz, MHD flow with heat and mass transfer of Williamson nanofluid over stretching sheet through porous medium, Microsystem Technologies 25 (2019), 1155-1169. [9] P. R. Sobhana Babu, P. Jayalakshmi, D. V. N. S. R. Murthy, C. Srinivasulu and W. Sridhar, Numerical investigation of Williamson fluid in presence of chemical reaction towards a parabolic surface, International Journal of Modelling and Simulation (2024), 1-13. https://doi.org/10.1080/02286203.2024.2441487. [10] D. V. N. S. R. Murthy, P. S. Babu and C. Srinivasulu, Impact of buoyancy on axisymmetric Powell-Eyring fluid with Joule heating in presence of chemical reaction, JP Journal of Heat and Mass Transfer 34 (2023), 65-91. [11] D. V. N. S. R. Murthy, P. S. Babu and C. Srinivasulu, Cattaneo-Christov model for mixed convective radiative flow of Casson fluid with Joule heating in the presence of chemical reaction over a stretching cylinder, JP Journal of Heat and Mass Transfer 34 (2023), 153-181. [12] P. R. Sobhana Babu, D. V. N. S. R. Murthy, C. Srinivasulu, D. Srinivasa Rao, N. Ravindra and V. V. S. Ramachandram, Influence of Joule heating on burgers fluid subject to of chemical responses towards an inclined stretching sheet, Journal of Nanofluids 13(1) (2024), 28-40. [13] C. S. C. Srinivasulu, D. M. D. Murthy, P. S. B. P. S. Babu, A. K. Kumar and N. R. N. Ravindra, Mathematical model for MHD micropolar fluid in with chemical reaction towards an exponential curved surface, CFD Letters 17(2) (2025), 17-42. [14] S. Mukhopadhyay, MHD boundary layer slip flow along a stretching cylinder, Ain Shams Engineering Journal 4(2) (2013), 317-324. [15] H. M. Duwairi and V. M. Al-Khliefat, Slip velocity effects on convection from a vertical surface embedded in a porous medium, Journal of Porous Media 17(12) (2014), 1053-1059. [16] P. A. Thompson and S. M. Troian, A general boundary condition for liquid flow at solid surfaces, Nature 389(6649) (1997), 360-362. [17] Z. Abbas, M. Sheikh, J. Hasnain, H. Ayaz and A. Nadeem, Numerical aspects of Thomson and Troian boundary conditions in a Tiwari-Das nanofluid model with homogeneous-heterogeneous reactions, Physica Scripta 94(11) (2019), 115220. [18] M. Ramzan, J. D. Chung, S. Kadry, Y. M. Chu and M. Akhtar, Nanofluid flow containing carbon nanotubes with quartic autocatalytic chemical reaction and Thompson and Troian slip at the boundary, Scientific Reports 10(1) (2020), 18710. [19] S. Chaudhary and J. Deshwal, Thompson and Troian velocity slip flow of the Casson hybrid nanofluid past a Darcy-Forchheimer porous inclined surface with Ohmic heating, Dufour and Soret effects, Pramana 98(2) (2024), 55. [20] S. Ahmad and S. Nadeem, Flow analysis by Cattaneo-Christov heat flux in the presence of Thomson and Troian slip condition, Applied Nanoscience 10(12) (2020), 4673-4687. [21] S. Nadeem, S. Ahmad and M. N. Khan, Mixed convection flow of hybrid nanoparticle along a Riga surface with Thomson and Troian slip condition, Journal of Thermal Analysis and Calorimetry 143 (2021), 2099-2109. [22] K. Gangadhar, P. M. Seshakumari, M. Venkata Subba Rao and A. J. Chamkha, MHD flow analysis of a Williamson nanofluid due to Thomson and Troian slip condition, International Journal of Applied and Computational Mathematics 8 (2022), 1-29. [23] S. R. R. Reddy, S. Jakeer, V. E. Sathishkumar, H. T. Basha and J. Cho, Numerical study of TC4-NiCr/EG+ water hybrid nanofluid over a porous cylinder with Thompson and Troian slip boundary condition: artificial neural network model, Case Studies in Thermal Engineering 53 (2024), 103794. [24] F. Abbas, H. M. Ali, M. Shaban, M. M. Janjua, T. R. Shah, M. H. Doranehgard, M. Ahmadlouydarab and F. Farukh, Towards convective heat transfer optimization in aluminum tube automotive radiators: potential assessment of novel TiO2/Fe2O3-water hybrid nanofluid, Journal of the Taiwan Institute of Chemical Engineers 124 (2021), 424-436. [25] M. Shoaib, M. A. Z. Raja, M. T. Sabir, M. Awais, S. Islam, Z. Shah and P. Kumam, Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto IIIA technique, Alexandria Engineering Journal 60(4) (2021), 3605-3619. [26] Y. Tong, T. Boldoo, J. H. Mr and H. Cho, Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid, Energy 196 (2020), 117086. [27] A. Boroomandpour, D. Toghraie and M. Hashemian, A comprehensive experimental investigation of thermal conductivity of a ternary hybrid nanofluid containing MWCNTs-titania-zinc oxide/water-ethylene glycol (80:20) as well as binary and mono nanofluids, Synthetic Metals 268 (2020), 116501. [28] O. A. Hussein, K. Habib, A. S. Muhsan, R. Saidur, O. A. Alawi and T. K. Ibrahim, Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid, Solar Energy 204 (2020), 208-222. [29] N. Iftikhar, A. Rehman and H. Sadaf, Theoretical investigation for convective heat transfer on Cu/water nanofluid and SiO3-Cu/water hybrid nanofluid with MHD and nanoparticle shape effects comprising relaxation and contraction phenomenon, International Communications in Heat and Mass Transfer 120 (2021), 105012. [30] X. Jin, G. Lin, A. Zeiny, H. Jin, L. Bai and D. Wen, Solar photothermal conversion characteristics of hybrid nanofluids: an experimental and numerical study, Renewable Energy 141 (2019), 937-949. [31] E. Yıldırım and A. Yurddaş, Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system, Renewable Energy 171 (2021), 1079-1096. [32] S. R. Yan, A. Golzar, M. Sharifpur, J. P. Meyer, D. H. Liu and M. Afrand, Effect of U-shaped absorber tube on thermal-hydraulic performance and efficiency of two-fluid parabolic solar collector containing two-phase hybrid non-Newtonian nanofluids, International Journal of Mechanical Sciences 185 (2020), 105832. [33] A. Koulali, A. Abderrahmane, W. Jamshed, S. M. Hussain, K. S. Nisar, A. H. Abdel-Aty, I. S. Yahia and M. R. Eid, Comparative study on effects of thermal gradient direction on heat exchange between a pure fluid and a nanofluid: employing finite volume method, Coatings 11(12) (2021), 1481. [34] A. Belhadj Mahammed, R. Fares, M. Lounis, W. Jamshed, S. M. Hussain and M. R. Eid, Thermal management of magnetohydrodynamic nanofluid within porous C-shaped cavity with undulated baffle, Journal of Thermophysics and Heat Transfer 36(3) (2022), 594-611. [35] W. Jamshed, M. R. Eid, S. M. Hussain, A. Abderrahmane, R. Safdar, O. Younis and A. A. Pasha, Physical specifications of MHD mixed convective of Ostwald- deWaele nanofluids in a vented-cavity with inner elliptic cylinder, International Communications in Heat and Mass Transfer 134 (2022), 106038. [36] P. Ramireddy and K. J. Lakshmi, Thermally stratified flow of Powell Eyring hybrid nanofluid with Joule heating over a porous stretching cylinder, JP Journal of Heat and Mass Transfer 37(6) (2024), 759-789. https://doi.org/10.17654/0973576324048. [37] P. Ramireddy and K. Jayalakshmi, The impression of thermal stratification and Joule heating on hybrid nanofluid over a porous stretching cylinder, JP Journal of Heat and Mass Transfer 38(1) (2025), 47-76. https://doi.org/10.17654/0973576325003. [38] T. Hayat, M. Qasim and S. Mesloub, MHD flow and heat transfer over permeable stretching sheet with slip conditions, Internat. J. Numer. Methods Fluids 66(8) (2011), 963-975. [39] W. Jamshed, K. S. Nisar, R. W. Ibrahim, T. Mukhtar, V. Vijayakumar and F. Ahmad, Computational frame work of Cattaneo-Christov heat flux effects on engine oil based Williamson hybrid nanofluids: a thermal case study, Case Studies in Thermal Engineering 26 (2021), 101179. [40] S. U. Devi and S. A. Devi, Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet, J. Nigerian Math. Soc. 36(2) (2017), 419-433. [41] N. S. Khashi’ie, N. M. Arifin, E. H. Hafidzuddin and N. Wahi, Thermally stratified flow of Cu-Al2O3/water hybrid nanofluid past a permeable stretching/shrinking circular cylinder, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 63(1) (2019), 154-163. [42] M. R. Ilias, N. A. Rawi, N. H. A. Raji and S. Shafie, Unsteady aligned MHD boundary layer flow and heat transfer of magnetic nanofluid past a vertical flat plate with leading edge accretion, ARPN J. Eng. Appl. Sci. 13(1) (2018), 340-351. [43] B. J. Gireesha, G. K. Ramesh and C. S. Bagewadi, Heat transfer in MHD flow of a dusty fluid over a stretching sheet with viscous dissipation, Advances in Applied Science Research 3(4) (2012), 2392-2401. |