ANALYTICAL AND NUMERICAL STUDY OF THE THERMOMECHANICAL BEHAVIOR OF FUNCTIONALLY GRADED CYLINDRICAL TANKS
In this study, we conducted an in-depth analysis of the thermomechanical behavior of cylindrical storage tanks with Functionally Graded Materials (FGMs), integrating both analytical and numerical approaches. We developed analytical models to predict temperature and stress distributions within these FGM tanks and validated them through finite element method (FEM) simulations. The results highlight the significant impact of property gradients on thermomechanical performance, revealing non-linear temperature variations across the tank’s thickness and complex stress gradients. These insights are crucial for designing more robust and efficient tanks for industrial applications, particularly under extreme thermal conditions. The findings underscore the importance of considering material property gradients in the design and analysis of thermal storage tanks.
tanks, property gradient, finite element, thermomechanical.
Received: August 1, 2024; Accepted: September 3, 2024; Published: October 3, 2024
How to cite this article: Salma EL AAMERY, Hanane SGHIOURI EL IDRISSI and El Hassan ACHOUYAB, Analytical and numerical study of the thermomechanical behavior of functionally graded cylindrical tanks, JP Journal of Heat and Mass Transfer 37(5) (2024), 711-726. https://doi.org/10.17654/0973576324045
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] H. Kacem, S. Hariri, J.-B. Vogt and J. Bouquerel, Study of the behavior of 9% nickel steels under cryogenic conditions: quasi-static and fatigue characterization, Mechanics Congress, 2017.[2] S. El Aamery, S. Elouardi and E. H. Achouyab, Effect of temperature on the thermal behavior of concrete and steel storage tanks, E3S Web of Conf., Vol. 469, 2023, p. 00035. doi: 10.1051/e3sconf/202346900035.[3] H.-L. Dai, Y.-N. Rao and T. Dai, A review of recent research on FGM cylindrical structures under coupled physical interactions, Composite Structures 152 (2016), 199-225. doi: 10.1016/j.compstruct.2016.05.042.[4] P. Das, A. Benslimane, M. A. Islam, A. A. Siddiquei, M. M. Rahman and M. M. Adil, Finite element analysis of a generalized rotating FGM vessel subjected to thermo-mechanical loadings: effect of Poisson ratio and inhomogeneity parameters, Heliyon 10(11) (2024), e31833.doi: 10.1016/j.heliyon.2024.e31833.[5] M. Amir, J. Lim, S.-W. Kim and S.-Y. Lee, Finite element analysis of natural frequencies of the FGM porous cooling plate with cutouts: a multilayered FGM approach, Results in Engineering 20 (2023), 101532.doi: 10.1016/j.rineng.2023.101532.[6] T. Sadowski, M. Bîrsan and D. Pietras, Multilayered and FGM structural elements under mechanical and thermal loads, Part I: Comparison of finite elements and analytical models, Archives of Civil and Mechanical Engineering 15(4) (2015), 1180-1192. doi: 10.1016/j.acme.2014.09.004.[7] M. Parhizkar Yaghoobi and M. Ghannad, An analytical solution for heat conduction of FGM cylinders with varying thickness subjected to non-uniform heat flux using a first-order temperature theory and perturbation technique, International Communications in Heat and Mass Transfer 116 (2020), 104684.doi: https://doi.org/10.1016/j.icheatmasstransfer.2020.104684.[8] M. Parhizkar Yaghoobi and M. Ghannad, An analytical solution for heat conduction of FGM cylinders with varying thickness subjected to non-uniform heat flux using a first-order temperature theory and perturbation technique, International Communications in Heat and Mass Transfer 116 (2020), 104684.doi: 10.1016/j.icheatmasstransfer.2020.104684.[9] M. D. Demirbas, Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity, Composites Part B: Engineering 131 (2017), 100-124.doi: 10.1016/j.compositesb.2017.08.005.[10] A. Moosaie and H. Panahi-Kalus, Thermal stresses in an incompressible FGM spherical shell with temperature-dependent material properties, Thin-Walled Structures 120 (2017), 215-224. doi: 10.1016/j.tws.2017.09.005.[11] S. EL AAMERY, H. SGHIOURI EL IDRISSI, S. ELOUARDI and El Hassan ACHOUYAB, Theoretical and numerical modeling of storage tanks subjected to high temperatures, JP Journal of Heat and Mass Transfer 37(1) (2024), 87-100. doi: 10.17654/0973576324006.[12] X.-W. Gao, H.-Y. Liu, J. Lv and M. Cui, A novel element differential method for solid mechanical problems using isoparametric triangular and tetrahedral elements, Comput. Math. Appl. 78(11) (2019), 3563-3585.doi: 10.1016/j.camwa.2019.05.026.[13] T. Sadowski, M. Bîrsan and D. Pietras, Multilayered and FGM structural elements under mechanical and thermal loads, Part I: Comparison of finite elements and analytical models, Archives of Civil and Mechanical Engineering 15(4) (2015), 1180-1192. doi: 10.1016/j.acme.2014.09.004.[14] P. Das, A. Benslimane, M. A. Islam, D. Mondal and M. S. Nazim, A thermo-mechanically loaded rotating FGM cylindrical pressure vessels under parabolic changing properties: an analytical and numerical analysis, Heliyon 10(4) (2024), e25969. doi: 10.1016/j.heliyon.2024.e25969.