EXPERIMENTAL EVALUATION OF SOLAR RADIATION QUANTIFICATION THROUGH A SOLAR TRACKING SYSTEM: THE CASE OF THE CITY OF OUAGADOUGOU (BURKINA FASO)
This paper presents an experimental study of the quantification of global solar radiation through a solar tracker system. Using an experimental two-axis sun-tracking device, we first experimentally measured solar radiation at Joseph KI-ZERBO University site, and then compared results with those obtained with a fixed system inclined at an angle of 12.350°. The results of this experimental study show that, on a clear-sky day, solar irradiation with a solar tracker is between 800W.m–2 and 1000W.m–2 between 8 a.m. and 4 p.m., i.e., an insolation duration of around 8 hours. What’s more, when using solar tracking systems, we see an overall radiation gain of around 52.33% compared with fixed systems tilted by an angle corresponding to the latitude of the site.
tracking system, solar radiation, experimentation.
Received: May 13, 2024; Accepted: September 20, 2024; Published: October 3, 2024
How to cite this article: Guy Christian Tubreoumya, Eloi Salmwendé Tiendrebeogo, Téré Dabilgou, Tchardja Combary, Jacques Nebié, Boubou Bagré, Alfa Oumar Dissa and Antoine Bere, Experimental evaluation of solar radiation quantification through a solar tracking system: the case of the city of Ouagadougou (Burkina Faso), JP Journal of Heat and Mass Transfer 37(5) (2024), 685-699. https://doi.org/10.17654/0973576324043
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] S. Ouédraogo, Production de la vapeur d’eau par le rayonnement solaire en circuit court à l’aide d’un concentrateur cylindro-parabolique composé (CPC), Thèse de doctorat en Physique Énergetique, Université Joseph Ki-Zerbo, Burkina Faso, 2023, 225 pp.[2] G. Landrieu, Les impacts des énergies fossiles sur l’environnement, 2014 [en ligne]. https://ineris.hal.science/ineris-00971900 (consulter le 30 juin 2024).[3] Bouwèreou Bignan-Kagomna, Issaka Ouedraogo, Daniel Windé Nongué Koumbem1 and Gado Tchabode, Numerical modelling of a parabolic trough concentrator for the design of a thermodynamic solar power plant, American Journal of Energy Engineering, Science Publishing Group (2022), 2-7.[4] B. Nadhir and H. Abdelkarim, Etude et simulation d’un système de poursuite solaire, Ph. D. Thesis en Electronique-Instrumentation, University of M’sila, Algérie, 2022, 90 pp.[5] Said Benkaciali and Kacem Gairaa, Comparative study of two models to estimate solar radiation on an inclined surface, Renewable Energy, Elsevier, 2011, pp. 1-10.[6] H. S. D. Nomao, H. B. Maikano, M. P. Sido and M. Boukar, Study of four (4) semi-empirical models for estimating direct radiation from the sun and modeling for application to the solar thermodynamic system, European Journal of Applied Sciences 10(4) (2022), 765-782.[7] E. Ouedraogo, O. Coulibaly and A. Ouedraogo, Elaboration d’une année météorologique type de la ville de Ouagadougou pour l’étude des performances énergétiques des bâtiments, Revue des Energies Renouvelables 15(1) (2012), 77-90.[8] J. G. Kombassere, Etude théorique et expérimentale de l’effet des passages nuageux sur les performances électriques des installations photovoltaïque, Master de Recherche en Sciences et Technologies, Université Joseph KI-ZERBO, Burkina Faso, 2022, 57 pp.[9] M. Koussa, A. Malek and M. Haddadi, Apport énergétique de la poursuite solaire sur deux axes par rapport aux systèmes fixes, Application aux capteurs plans, Revue des Energies Renouvelables 10(4) (2007), 515-537.