NARAYANA’S COWS AND TRIBONACCI SEQUENCES IN PILLAI’S PROBLEM
Let be the Narayana’s cows sequence and the Tribonacci sequence. Then we study and completely solve the Diophantine equation where m, n, and are positive integers with
Diophantine equations, Tribonacci sequence, Narayana’s cows sequence, linear forms in logarithms, reduction method, continued fractions
Received: December 23, 2024; Revised: March 5, 2025; Accepted: March 21, 2025; Published: April 23, 2025
How to cite this article: Salifou Nikiema and Sémou Diouf, Narayana’s cows and Tribonacci sequences in Pillai’s problem, JP Journal of Algebra, Number Theory and Applications 64(3) (2025), 307-327. https://doi.org/10.17654/0972555525017
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] A. Baker and H. Davenport, The equations and Quart. J. Math. Oxford Ser. 20 (1969), 129-137.[2] S. G. Sanchez and F. Luca, Linear combinations of factorials and S-units in a binary recurrence sequence, Ann. Math. Québec 38 (2014), 169-188.[3] M. Ddamulira, F. Luca and M. Rakotomalala, On a problem of Pillai with Fibonacci and powers of 2, Proc. Indian Acad. Sci. (Math. Sci.) 127(3) (2017), 411-421.[4] A. C. G. Lomelía, S. H. Hernándeza and F. Luca, Pillai’s problem with the Fibonacci and Padovan sequences, Ann. Math. Inform. 50 (2019), 101-115.[5] Pagdame Tiebekabe and Serge Adonsou, On Pillai’s problem involving two linear recurrent sequences: Padovan and Fibonacci, Malaya J. Mat. 10(3) (2022), 204-215. http://doi.org/10.26637/mjm1003/003.[6] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. 163(2) (2006), 969-1018.[7] J. J. Bravo, F. Luca and K. Yazán, On Pillai’s problem with Tribonacci numbers and powers of 2, Bull. Korean Math. Soc 54(3) (2017), 1069-1080.[8] A. C. G. Lomelí and S. H. Hernández, Pillai’s problem with Tribonacci numbers and powers of two, Rev. Colombiana Mat. 53(1) (2019), 1-14.[9] K. Chim, I. Pink and V. Ziegler, On a variant of Pillai’s problem, Int. J. Number Theory 7 (2017), 1711-1727.[10] K. C. Chim, I. Pink and V. Ziegler, On a variant of Pillai’s problem II, J. Number Theory 183 (2018), 269-290.[11] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180.[12] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford 49(3) (1998), 291-306.[13] S. H. Hernández, F. Luca and L. M. Rivera, On Pillai’s problem with the Fibonacci and Pell sequences, Bol. Soc. Mat. Mex. (3) 25 (2019), 495-507.[14] S. S. Pillai, On J. Indian Math. Soc. 2 (1936), 119-122.[15] S. S. Pillai, On the equation Bull. Calcutta Math. Soc. 37 (1945), 15-20.[16] R. J. Stroeker and R. Tijdeman, Diophantine equations, Computational Methods in Number Theory, Part II, Math. Centre Tracts, Math. Centrum, Amsterdam, 1982, pp. 321-369.[17] T. Pagdame, A. Serge and D. Ismaïla, On solutions of the Diophantine equation Moroccan J. Algebra Geom. Appl. 2(2) (2023), 246-261.[18] S. Heintze and V. Ziegler, On Pillai’s problem involving Lucas sequences of the second kind, Res. Number Theory 10 (2024), Article number 51.https://doi.org/10.1007/s40993-024-00534-5.[19] M. Ddamulira, On a problem of Pillai with Fibonacci numbers and powers of 3, Bol. Soc. Mat. Mex. 26(2) (2020), 263-277. doi: 10.1007/s40590-019-00263-1.[20] García Lomelí, Ana Cecilia and Santos Hernández Hernández, Pillai’s problem with Padovan numbers and powers of two, Rev. Colombiana Mat. 53(1) (2019), 1-14.