CALCULATING GENERATORS OF POWER INTEGRAL BASES IN SEXTIC FIELDS WITH A REAL QUADRATIC SUBFIELD
We discuss the problem of calculating generators of power integral bases in sextic fields, especially focusing on the case of sextic fields with real quadratic subfields. Our main purpose is to describe an efficient algorithm for calculating generators of power integral bases. We show that appropriately using integer arithmetics speeds up the calculations considerably. Our experiences lead to some interesting general statements on generators of power integral bases in number fields generated by a unit.
monogenity, power integral basis, sextic fields, relative cubic extension, quadratic subfield, relative Thue equations, sieving
Received: March 12, 2025; Revised: March 28, 2025; Accepted: April 8, 2025; Published: April 14, 2025
How to cite this article: István Gaál, Calculating generators of power integral bases in sextic fields with a real quadratic subfield, JP Journal of Algebra, Number Theory and Applications 64(3) (2025), 289-306. https://doi.org/10.17654/0972555525016
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] A. M. Bergé, J. Martinet and M. Olivier, The computation of sextic fields with a quadratic subfield, Math. Comput. 54 (1990), 869-884.[2] Y. Bilu, I. Gaál and K. Györy, Index form equations in sextic fields: a hard computation, Acta Arith. 115(1) (2004), 85-96.[3] R. Dedekind, Über Zusammenhang zwischen der Theorie der Ideale und der Theorie der höhere Kongruenzen, Abh. König. Ges. der Wissen. zu Göttingen 23 (1878), 1-23.[4] I. Gaál, Calculating “small” solutions of relative Thue equations, Exp. Math. 24 (2015), 142-149.[5] I. Gaál, Diophantine equations and power integral bases, Theory and Algorithms, 2nd ed., Birkhäuser, Boston, 2019.[6] I. Gaál, Calculating generators of power integral bases in pure sextic fields, Funct. Approx. Comment. Math. 70(1) (2024), 85-100.[7] I. Gaál, A note on the monogenity of some trinomials of type JP J. Algebra Number Theory Appl. 63 (2024), 265-279.[8] I. Gaál, Monogenity and power integral bases: recent developments, Axioms 13(7) (2024), 429. https://doi.org/10.3390/axioms13070429.[9] I. Gaál, Calculating power integral bases in some quartic fields corresponding to monogenic families of polynomials, JP J. Algebra Number Theory Appl. 64(1) (2025), 99-115.[10] I. Gaál and M. Pohst, On the resolution of index form equations in sextic fields with an imaginary quadratic subfield, J. Symbolic Comput. 22(4) (1996), 425-434.[11] I. Gaál, L. Remete and T. Szabó, Calculating power integral bases by solving relative Thue equations, Tatra Mt. Math. Publ. 59 (2014), 79-92.[12] I. Gaál, L. Remete and T. Szabó, Calculating power integral bases by using relative power integral bases, Funct. Approx. Comment. Math. 54 (2016), 141-149.[13] H. Hasse, Zahlentheorie, Akademie-Verlag, Berlin, 1963.[14] K. Hensel, Theorie der Algebraischen Zahlen, Teubner Verlag, Leipzig, Berlin, 1908.[15] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer, 2004.[16] M. Olivier, Corps sextiques contenant un corps quadratique (I), Sém. Théor. Nombres Bordeaux (2) 1 (1989), 205-250.