ASYMPTOTIC STABILITY OF FOR STRONGLY NOETHERIAN FILTRATION
Let A be a Noetherian ring, and be a strongly Noetherian filtration on the ring A. Then we generalize the Artin-Rees Lemma to strongly Noetherian filtrations. This allows us to show that if the ideal I1 contains an f-superficial element of order one which is regular, then the sequence stabilizes.
Noetherian ring, filtration, associated prime ideals, superficial element.
Received: January 2, 2025; Revised: February 18, 2025; Accepted: March 10, 2025; Published: March 31, 2025
How to cite this article: N. C. Akaffou, D. Kamano, E. D. Akeke and A. Abdoulaye, Asymptotic stability of for strongly Noetherian filtration JP Journal of Algebra, Number Theory and Applications 64(3) (2025), 239-250. https://doi.org/10.17654/0972555525014
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Assane, P. Ayégnon and D. Sangaré, On the asymptotic nature of the analytic spread of I-good and strongly Noetherian filtrations, Afrika Mat. (3) 12 (2001), 53-62.[2] K. A. Essan, A. Abdoulaye, D. Kamano and E. D. Akeke, -sporadic prime ideals and superficial elements, Journal of Algebra and Related Topics 5(2) (2017), 35-45.[3] N. Bourbaki, Eléments de Mathématiques, Masson, 1984.[4] M. Brodmann, Asymptotic stability of Proc. Amer. Math. Soc. 74(1) (1979), 16-18.[5] S. McAdam and P. Eakin, The asymptotic Ass, Journal of Algebra 61(1) (1979), 71-81.[6] K. A. Essan, Filtration, asymptotic σ-prime divisors and superficial elements, Journal of Algebra and Related Topics 9(1) (2021), 159-167.[7] K. A. Essan, Opérations de clôture sur les sous-modules d’un module, Annales Mathématiques Africaines 3 (2012), 89-100.[8] I. Swanson and C. Huneke, Integral closure of ideals, rings, and modules, London Mathematical Society, Lecture Note Series 336, Cambridge University Press, 2006.[9] S. McAdam, Asymptotic prime divisors, No. 1023, Springer-Verlag, Berlin Heidelberg New York, 1983.[10] M. Nagata, Local Rings, Interscience Publishers, a Division of John Wiley Sons, New York, London, 1962.[11] L. J. Ratliff, Jr., On prime divisors of n large, Michigan Math. J. 23 (1976), 337-352.[12] L. J. Ratliff, Jr., Notes on essentially power filtrations, Michigan Math. J. 26 (1979), 313-324.[13] Eric West, Primes associated to multigraded modules, J. Algebra 271 (2004), 427-453.