GOODNESS-OF-FIT TEST FOR POISSON PROCESSES WITH A SCALE PARAMETER
We propose the goodness-of-fit test for inhomogeneous Poisson processes with unknown scale parameter. A test statistic of the Anderson-Darling type is proposed and its asymptotic behavior is studied when the unknown parameter is estimated using the maximum likelihood estimator. We show that under null hypothesis, the limit distribution of this statistic does not depend on unknown parameter. Furthermore, we establish the consistency of the test against the alternative hypothesis.
inhomogeneous Poisson process, parametric basic hypothesis, Anderson-Darling type test, maximum likelihood estimator, asymptotically parameter free test, scale parameter
Received: August 27, 2024; Revised: December 16, 2024; Accepted: February 12, 2025; Published: March 25, 2025
How to cite this article: H. G. Izaddine, D. Diakhaté, A. D. Rafiou and A. S. Dabye, Goodness-of-fit test for Poisson processes with a scale parameter, Far East Journal of Theoretical Statistics 69(2) (2025), 129‑153. https://doi.org/10.17654/0972086325006
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] T. W. Anderson and D. A. Darling, Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes, Annals of Mathematical Statistics 23 (1952), 193-212.[2] T. W. Anderson and D. A. Darling, A test of goodness of fit, J. Amer. Statist. Assoc. 49 (1954), 765-769.[3] H. Cramér, On the composition of elementary errors, Scand. Actuar. J. 11(1) (1928), 141-180.[4] A. S. Dabye, On the Cramér-von Mises test with parametric hypothesis for Poisson processes, Stat. Inference Stoch. Process. 16(1) (2013), 1 13.[5] A. S. Dabye, D. Diakhaté and A. D. Rafiou, An Anderson-Darling type test for inhomogeneous Poisson processes, Under review in Mathematical Methods of Statistics, 2024.[6] A. S. Dabye, Yu. A. Kutoyants and E. D. Tanguep, On the APF test for Poisson processes with shift and scale parameters, Statist. Probab. Lett. 145 (2019), 28-36.[7] A. S. Dabye, D. Tanguep and A. Top, On the Cramér-von Mises test for Poisson processes with scale parameter, Far East J. Theor. Stat. 52(6) (2016), 419-441.[8] S. Dachian and Yu. A. Kutoyants, On the goodness-of-fit testing for some continuous time processes, Statistical Models and Methods for Biomedical and Technical Systems, F. Vonta et al., eds., Birkhäuser, Boston, 2007, pp. 395-413.[9] D. A. Darling, The Cramér-Smirnov test in the parametric case, Annals of Mathematical Statistics 26 (1955), 1-20.[10] D. A. Darling, The Kolmogorov-Smirnov, Cramér-von Mises tests, Annals of Mathematical Statistics 28 (1957), 823-838.[11] R. Davies, Testing the hypothesis that a point process is Poisson, Advances in Applied Probability 9 (1977), 724-746.[12] J. Durbin, Distribution Theory for Tests Based on the Sample Distribution Function, Philadelphia, SIAM, 1973.[13] J. Durbin, M. Knott and C. C. Taylor, Components of Cramér-von Mises statistics. II, Journal of the Royal Statistical Society, Series B (Methodological) 37 (1975), 216-237.[14] I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes, W. B. Saunders Company, 1969.[15] I. A. Ibragimov and R. Z. Khasminskii, Statistical Estimation: Asymptotic Theory, Springer, New York, 1981.[16] A. Kolmogorov, On the empirical determination of a distribution law, Giornale dell’Istituto Italiano degli Attuari 4 (1933a), 1-11.[17] A. Kolmogorov, On the limit theorems of probability theory, Bulletin of the Academy of Sciences of the USSR (1933b), 363-372.[18] Y. A. Kutoyants, Statistical inference for spatial Poisson processes, Lecture Notes Statistics, 134, Springer-Verlag, 1998.[19] Yu. A. Kutoyants, Introduction to the Statistics of Poisson Processes and Applications, Springer, 2023.[20] L. Le Cam, On the asymptotic theory of estimation and testing hypotheses, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 1956, pp. 355-368.[21] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, 3rd ed., Springer-Verlag, New York, 2005.[22] G. Martynov, Note on the Cramér-von Mises test with estimated parameters, Publ. Math. Debrecen 76(3) (2010), 341-346.[23] A. N. Pettitt, Testing the normality of several independent samples using the Anderson-Darling statistic, Journal of the Royal Statistical Society, Series A (General) 140(2) (1977), 156-161.[24] N. V. Smirnov, Sur la distribution de w2 (critère de M. R. von Mises), Comptes Rendus de l’Académie des Sciences (Paris) 202 (1936), 449-452.[25] M. A. Stephens, Asymptotic results for goodness-of-fit statistics with unknown parameters, Ann. Statist. 4(2) (1976), 357-369.[26] M. A. Stephens, Goodness-of-fit for the extreme value distribution, Biometrika 64(3) (1977), 583-588.[27] R. von Mises, Lectures on Applied Mathematics. 1, Probability Theory and its Application in Statistics and Theoretical Physics, Springer, Vienna, 1931.[28] L. Zhou, On asymptotically parameter free tests for ergodic diffusion processes, Publications de l’Institut de Statistique de l’Université de Paris 58(1-2) (2014), 37 56.