STATIC CODES AND MONOMIAL TRANSFORMATIONS
In linear coding theory, monomial transformations play crucial roles in various contexts, including the proof of the well-known MacWilliams Extension Theorem. In this paper, we introduce static and adstatic codes. Along with some elementary observations, we prove that static and adstatic codes are invariant under monomial transformations and that this property is Morita invariant.
MacWilliams extension property, monomial transformation, static codes, adstatic codes.
Received: October 26, 2024; Accepted: December 10, 2024; Published: March 7, 2025
How to cite this article: Wafaa M. Fakieh and S. Khalid Nauman, Static codes and monomial transformations, JP Journal of Algebra, Number Theory and Applications 64(2) (2025), 181‑197. https://doi.org/10.17654/0972555525011
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] J. M. Al-Musannef and S. K. Nauman, A taxonomy of static modules with examples, Communications in Algebra 44(11) (2016), 4851-4864. DOI:10.1080/00927872.2015.1129631.[2] K. Bogart, D. Goldberg and J. Gordon, An elementary proof of the MacWilliams theorem on equivalence of codes, Information and Control 37(1) (1978), 19-22.[3] H. Q. Dinh and S. R. Lopez-Permouth, On the equivalence of codes over finite rings, Appl. Algebra Eng., Commun. Comput. 15(1) (2004), 37-50.[4] S. Dyshko, Generalizations of the MacWilliams Extension Theorem, General Mathematics [math.GM], Université de Toulon, 2016. English. NNT: 2016TOUL0018.[5] M. Greferath, A. Nechaev and R. Wisbauer, Finite quasi-Frobenius modules and linear codes, Journal of Algebra and its Applications 3(3) (2004), 247-272.[6] T. Y. Lam, Lectures on Modules and Rings, Springer, 1999.[7] F. J. MacWilliams, Error-correcting codes for multiple-level transmission, Bell System Technical Journal 40(1) (1961), 281-308.[8] F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups, Ph.D. Thesis, Radcli e College, 1962.[9] A. Marcus, Representation Theory of Group-graded Algebras, Nova Science Publishers, 1999.[10] S. K. Nauman, Static modules and stable Clifford theory, J. Algebra 128 (1990), 497-509.[11] S. K. Nauman, Static modules, Morita contexts and equivalences, J. Algebra 135 (1990), 192-202.[12] H. N. Ward and J. A. Wood, Characters and the equivalence of codes, Journal of Combinatorial Theory Series A 73(2) (1996), 348-352.[13] R. Wisbauer, Static modules and equivalences, Interactions between Ring Theory and Representation Theory, V. Oystaeyen, M. Saorin, ed., Marcel Dekker, LNPAM 210 (2000), 423-449.[14] J. A. Wood, Weight functions and the extension theorem for linear codes over finite rings, Contemporary Mathematics 225 (1999), 231-243.[15] J. A. Wood, Foundations of linear codes defined over finite modules: the extension theorem and the MacWilliams identities, Codes Over Rings, Volume 6 of Ser. Coding Theory Cryptol., World Sci. Publ., Hackensack, NJ, 2009, pp. 124-190.[16] J. A. Wood, Isometry Groups of Additive Codes, Presented at AMS Meeting, Loyola University, Chicago, IL, 2015.