FACTORIZATION IN THE RING OF ARITHMETIC FUNCTIONS ON GAUSSIAN INTEGERS
In this paper, we investigate the multiplicative structure of the ring of complex valued arithmetic functions defined on the ring of Gaussian integers, and show that this ring is a unique factorization domain.
Gaussian integers, arithmetic functions, factorization.
Received: July 15, 2024; Accepted: September 25, 2024; Published: March 7, 2025
How to cite this article: Jaki Chowdhury, Factorization in the ring of arithmetic functions on Gaussian integers, JP Journal of Algebra, Number Theory and Applications 64(2) (2025), 117-132. https://doi.org/10.17654/0972555525007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] E. Alkan, A. Zaharescu and M. Zaki, Arithmetical functions in several variables, Int. J. Number Theory 1(3) (2005), 383-399.[2] E. Alkan, A. Zaharescu and M. Zaki, Unitary convolution for arithmetical functions in several variables, Hiroshima Math. J. 36(1) (2006), 113-124.[3] E. Alkan, A. Zaharescu and M. Zaki, Multidimentional averages and Dirichlet convolution, Manuscripta Math. 123 (2007), 251-267.[4] D. Bhattacharjee, On some rings of arithmetical functions, Georgian Math. J. 6(4) (1999), 299-306.[5] T. B. Carroll and A. A. Gioia, On a subgroup of the group of multiplicative arithmetic functions, J. Austral. Math. Soc. Ser. A 20(3) (1975), 348-358.[6] E. D. Cashwell and C. J. Everett, The ring of number-theoretic functions, Pacific J. Math. 9 (1959), 975-985.[7] P. Haukkanen, Comparison of regular convolutions, Portugal. Math. 46(1) (1989), 59-69.[8] T. MacHenry, A subgroup of the group of units in the ring of arithmetic functions, Rocky Mountain J. Math. 29(3) (1999), 1055-1065.[9] R. Migliorato, Prime elements in the ring of arithmetical functions, Atti Soc. Peloritana Sci. Fis. Mat. Natur. 25(3-4) (1979), 255-283 (in Italian).[10] W. Narkiewicz, On a class of arithmetical convolutions, Colloq. Math. 10 (1963), 81-94.[11] W. Narkiewicz, Some unsolved problems, Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969), pp. 159-164, Bull. Soc. Math. France, Mem. No. 25, Soc. Math. France, Paris, 1971.[12] F. Pellegrino, Operatori lineari dell’anello delle funzioni aritmetiche, Rend. Mat. e Appl. (5) 25 (1966), 308-332 (in Italian).[13] H. Scheid, Über ordnungstheoretische Funktionen, J. Reine Angew. Math. 238 (1969), 1-13.[14] H. Scheid, Funktionen über lokal endlichen Halbordnungen, I, Monatsh. Math. 74 (1970), 336-347.[15] H. Scheid, Funktionen über lokal endlichen Halbordnungen, II, Monatsh. Math. 75 (1971), 44-56.[16] A. Schinzel, A property of the unitary convolution, Colloq. Math. 78(1) (1998), 93-96.[17] E. D. Schwab, Möbius categories as reduced standard division categories of combinatorial inverse monoids, Semigroup Forum 69(1) (2004), 30-40.[18] E. D. Schwab, The Möbius category of some combinatorial inverse semigroups, Semigroup Forum 69(1) (2004), 41-50.[19] E. D. Schwab and G. Silberberg, A note on some discrete valuation rings of arithmetical functions, Arch. Math. (Brno) 36 (2000), 103-109.[20] E. D. Schwab and G. Silberberg, The valuated ring of the Arithmetical functions as a power series ring, Arch. Math. (Brno) 37 (2001), 77-80.[21] V. Sitaramaiah, Arithmetical sums in regular convolutions, J. Reine Angew. Math. 303/304 (1978), 265-283.[22] J. Snellman, Truncations of the ring of arithmetical functions with unitary convolution, Int. J. Math. Game Theory Algebra 13(6) (2003), 485-519.[23] T. Steinberger, A. Zaharescu and M. Zaki, Arithmetical functions in several variables, Int. J. Number Theory 9(8) (2013), 1923-1932.[24] B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212-216.[25] K. L. Yokom, Totally multiplicative functions in regular convolution rings, Canad. Math. Bull. 16 (1973), 119-128.[26] A. Zaharescu and M. Zaki, Derivations and generating degrees in the ring of arithmetical functions, Proc. Indian Acad. Sci. Math. Sci. 117(2) (2007), 167-175.[27] A. Zaharescu and M. Zaki, Factorization in certain rings of arithmetical functions, Kumamoto J. Math. 21 (2008), 29-39.[28] A. Zaharescu and M. Zaki, An algebraic independence result for Euler products of finite degree, Proc. Amer. Math. Soc. 137(4) (2009), 1275-1283.[29] A. Zaharescu and M. Zaki, Valuations on the ring of arithmetical functions, Acta Math. Univ. Comenian. (N.S.) 78(1) (2009), 115-119.[30] A. Zaharescu and M. Zaki, An ABC analog for arithmetical functions, J. Ramanujan Math. Soc. 25(4) (2010), 345-354.