COMMUTATIVE ALGEBRAS SATISFYING IDENTITY x3y = 0
It is known that commutative power-associative nilalgebras of nilindex 4 are not necessarily nilpotent. This was proved by Suttles’ counterexample to a conjecture of Albert. This article is about commutative non-associative algebras of characteristic which satisfy the identity These algebras are nilpotent if they are finite dimensional. For dimension 3 or 4, commutative nilalgebras of index 4 are such algebras. For dimension power-associativity implies that they are Jordan algebras. For dimension 6, if they are power-associative but not Jordan algebras, then they are nilpotent of index 5 and solvable of index 3.
commutative, Jordan, power-associative, nilalgebra, nilpotent, solvable
Received: August 3, 2024; Accepted: November 23, 2024; Published: December 5, 2024
How to cite this article: Joseph BAYARA and Poussyan Patrice OUEDRAOGO, Commutative algebras satisfying identity x3y = 0, JP Journal of Algebra, Number Theory and Applications 64(1) (2025), 27-46. https://doi.org/10.17654/0972555525003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-593.[2] M. Arenas, The Wedderburn principal theorem for generalized almost-Jordan algebras, Comm. Algebra 35(2) (2007), 675-688.[3] J. Bayara, A. Konkobo and M. Ouattara, Algèbres de lie triple sans idempotent, Afrika Matematika 25 (2014), 1063-1075.[4] L. Carini, I. R. Hentzel and G. M. Piacentini-Cattaneo, Degree four identities not implied by commutativity, Comm. Algebra 16(2) (1988), 339-356.[5] I. Correa and I. R. Hentzel, Commutative finitely generated algebras satisfying are solvable, Rocky Mountain J. Math. 39 (2009), 757-764.[6] I. Correa, I. R. Hentzel and A. Labra, Solvability of commutative right-nilalgebras satisfying Proyectiones Journal of Mathematics 29 (2009), 9-15.[7] I. Correa, I. R. Hentzel and A. Labra, Nilpotency of commutative finitely generated algebras satisfying Journal of Algebra 330 (2011), 48-59.[8] A. Elduque and A. Labra, On the classification of commutative right-nilalgebras of dimension at most four, Communication in Algebra 25(2) (2007), 577-588.[9] A. Elduque and A. Labra, On some Jordan baric algebras, Journal of Algebra and its Applications 12(05) (2013), 1250215, 12 pp.[10] L. Elgueta and A. Suazo, Jordan nilalgebras of dimension 6, Proyecciones 21(3) (2002), 277-289.[11] M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices, II. Duke Math. J. 27 (1960), 21-31.[12] M. Gerstenhaber and H. C. Myung, On commutative power-associative nilalgebras of low dimension, Proc. A. M. S. 48 (1975), 29-32.[13] J. C. Gutiérrez Fernández, Commutative finite-dimensional algebras satisfying are nilpotent, Comm. Algebra 37(10) (2009), 3760-3776.[14] I. R. Hentzel and A. Labra, Generalized Jordan algebras, Linear Algebra and its Applications 422(2) (2007), 326-330.[15] I. R. Hentzel and L. A. Peresi, Almost Jordan rings, Proc. Amer. Math. Soc. 104(2) (1988), 343-348.[16] C. Mallol, M. Nourigat and R. Varro, Sur la classification des nilalgèbres commutatives de nilindice 3, Comm. Alg. 33 (2005), 4149-4158.[17] J. M. Osborn, Commutative algebras satisfying an identity of degree four, Proc. Amer. Math. Soc. 16 (1965), 1114-1120.[18] H. P. Petersson, Über den Wedderburnschen Struktursatz für Lie-Tripel-Algebren, Math. Z. 98 (1967), 104-118.[19] H. P. Petersson, Zur Theorie der Lie-Tripel-Algebren, Math. Z. 97 (1967), 1-15.[20] R. D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications Inc., New York, 1995. [21] A. V. Sidorov, Solvability and nilpotency in Lie triple algebras, Deposited in VINITI (1977), 1125-1177.[22] A. V. Sidorov, On Lie triple algebras, Algebra i Logika 20(1) (1981), 101-108.[23] D. A. Suttles, Counterexample to a conjecture of albert, Notices Amer. Math. Soc. 19 (1972), A-566.