GENERALIZATION OF McCONNELL’S THEOREM IN PRIME CHARACTERISTIC
Let k be a field and I be an ideal of the polynomial algebra in n variables. If A is a (commutative) k-algebra, then we denote by the algebra of differential operators on the algebra A.
Differential operators, Weyl algebras, k-algebra of finite type.
Received: August 28, 2024; Accepted: October 21, 2024; Published: November 19, 2024
How to cite this article: Sama Anzoumana and Konan M. Kouakou, Generalization of McConnell’s theorem in prime characteristic, JP Journal of Algebra, Number Theory and Applications 64(1) (2025), 11-26. https://doi.org/10.17654/0972555525002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique IV (quatrième partie), Publications Mathematiques I.H.E.S. 32 (1967), 39-40.[2] A. Sama and K. M. Kouakou, Quelques opérations algébriques dans l’ensemble des opérateurs différentiels sur une k-algèbre de type fini, Annales Mathématiques Africaines 7 (2018), 49-63.[3] A. Sama, Soro K. Fousséni and K. M. Kouakou, Algebra of differential operators on Laurent polynomials rings, RAMRES Sciences des Structures et de la Matière 7(2) (2023), 132-143.[4] J. Dixmier, Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209-242.[5] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Pure and Applied Mathematics, John Wiley & Sons, Chichester, UK, 1987, pp. 590-593.[6] K. E. Smith, Differential operators and connections with tight closure, Commutative Algebra, W. Bruns, J. Herzog, M. Hochster and U. Vetter, eds., Vechtaer Universitltsschriften, Cloppenburg, 1994, pp. 1755179.[7] L. Makar-Limanov, Rings of differential operators on algebraic curves, J. London. Math. Soc. 21 (1989), 538-540.[8] R. C. Cannings and M. P. Holland, Right ideals of rings of differential operators finite-dimensional algebra, J. Algebra 167 (1994), 116-141.[9] S. C. Countiho, A prime of algebraic D-modules, London Mathematical Society Student Texts 33, Cambridge University Press, 1995, pp. 22-23.[10] S. P. Smith and J. T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. 56 (1988), 229-259.[11] V. V. Bavula, Dimension, multiplicity, holonomic modules, and an analogue of the inequality of Bernstein for rings of differential operators in prime characteristic, Represent. Theory 13 (2009), 182-227. (Arxiv:math. RA/0605073).[12] William Nathaniel Traves, Differential operator and Nakai’s conjecture, Thèse Pour le diplôme de Doctorat en Philosophie, Département de Mathéatiques Université de Toronto, 1998, p. 20.