TEMPORAL LINEAR STABILITY OF A CONVECTIVE ATMOSPHERIC PARCEL WITH AN AFFINE VELOCITY FIELD
The assumption of an affine velocity profile led to the establishment of a satisfying base flow since the pressure is hydrostatic and the vertical gradient of the density is decreasing. Subsequently, the disturbance of our basic flow allowed us to obtain dispersion relations whose resolutions have given eigenfrequencies. Numerical analysis of these eigenfrequencies has shown that apparent gravity is not a destabilizing parameter, unlike the real gravity intensity and the entrainment rate, which are destabilizing parameters for the atmospheric cell in full ascent in the atmospheric boundary layer.
linear temporal stability, convective atmospheric parcel, basic flow, disturbance, boundary layer
Received: June 12, 2024; Revised: July 8, 2024; Accepted: July 30, 2024; Published: September 25, 2024
How to cite this article: Yao Kramoh, François N’doli Koffi, Stanille Adjoua Koffi and Djédjé Sylvain Zeze, Temporal linear stability of a convective atmospheric parcel with an affine velocity field, Far East Journal of Dynamical Systems 37(2) (2024), 179-204. https://doi.org/10.17654/0972111824008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. N. Djue, Y. Kramoh, E. Danho and S. K. K. Yanga, On the stability of convective atmospheric flows, Asian Journal of Applied Sciences 6(1) (2013), 29 39.[2] R. N. Djue, Y. Kramoh, E. Danho and S. K. K. Yanga, Linear stability investigation of an active atmospheric warm cloud flow, Advances and Applications in Fluid Mechanics 15(2) (2014), 101-116.[3] R. N. Djue, Y. Kramoh, E. Danho and D. B. Asseke, Challenging of self- conversion and capture processes on the stability of active clouds flows, Advances and Applications in Fluid Mechanics 15(2) (2014), 117-129.[4] R. N. Djue, Y. Kramoh, E. Danho and D. B. Asseke, Linear stability of passive clouds flows, Far East J. Math. Sci. (FJMS) 84(1) (2014), 65-80.[5] R. N. Djue, Y. Kramoh, E. Danho and D. B. Asseke, Entrainment of surrounding air effects on the stability of passive clouds containing water droplets, Far East J. Math. Sci. (FJMS) 84(1) (2014), 123-138.[6] A. S. Koffi, Etude de la stabilité de solutions mathématiques issues de la modélisation de systèmes frontaux sous gradients thermiques, Thèse Unique de Doctorat, 2021.[7] S. A. Koffi, F. N. Koffi and R. N. Djué, Interfacial stabilities in pure convection regime under thermal influence: model of generation of waves in localized ocean-atmosphere interactions, Far East J. Math. Sci. (FJMS) 113(2) (2019), 193-208.[8] F. Charru, Instabilités hydrodynamiques, Savoirs Actuels, CNRS Éditions, 2007.[9] Kramoh Yao, Etude de la stabilité linéaire temporelle de variétés-solutions issues de modèles mathématiques d’ecoulement nuageux de type cumulus, Thèse Unique de Doctorat, 2014.[10] R. N. Djue, Modélisation des interactions et transferts dans les couches nuageuses, Université de Cocody-Abidjan, Thèse Unique de Doctorat ès Sciences, 2004.