ON HILBERTIAN STOCHASTIC PROCESSES: CONVERGENCE IN THE CENTRAL LIMIT THEOREM
In this paper, we deal with a problem in probability theory, namely, the law convergence of Hilbertian processes. We first consider a causal stochastic process in Wold representation. In the second step, we assume a nonlinear process under a strong mixing condition. We develop new methods to evaluate the convergence of the normalized partial n-sum in a separable Hilbert space H. Thus through a Fourier and multiplicative inequality of characteristic functions coupling method, we establish a convergence speed of for the linear process. For the nonlinear process, the convergence speed is of order and by a Götze-Jirak approach method.
characteristic functions, covariance operator, Hilbert spaces, Fourier-Stieltjes transform, rate of convergence, Central Limit Theorem
Received: June 3, 2024; Revised: July 21, 2024; Accepted: August 1, 2024; Published: September 12, 2024
How to cite this article: Claude YAMEOGO, Victorien F. KONANE and Wahabo BAGUIAN, On Hilbertian stochastic processes: convergence in the Central Limit Theorem, Far East Journal of Theoretical Statistics 68(3) (2024), 305-333. https://doi.org/10.17654/0972086324018
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] V. Bentkus, Asymptotic expansions in the central limit theorem in Hilbert space, Lithuanian Math. J. 24(3) (1984), 210-225.[2] Vidmantas Yurgio Bentkus et al., The accuracy of Gaussian approximation in Banach spaces, Itogi Nauki i Tekhniki. Seriya, Sovremennye Problemy Matematiki. Fundamental’nye Napravleniya, Vol. 81, 1991, pp. 39-139.[3] Vidmantas Bentkus and F. Gotze, Optimal rates of convergence in the CLT for quadratic forms, Ann. Probab. 24 (1996), 466-490.[4] V. Yu Bentkus, Asymptotic expansions for distributions of sums of independent random elements of a Hilbert space, Lithuanian Math. J. 24(4) (1984), 305-319.[5] Vidmantas Bentkus and Friedrich Götze, Optimal bounds in non-Gaussian limit theorems for U-statistics, Ann. Probab. 27(1) (1999), 454-521.[6] Andrew C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates, Trans. Amer. Math. Soc. 49(1) (1941), 122-136.[7] Gilles Blanchard and Oleksandr Zadorozhnyi, Concentration of weakly dependent Banach-valued sums and applications to statistical learning methods, 2017. arXiv preprint arXiv:1712.01934.[8] Jérôme Dedecker, Florence Merlevède and Emmanuel Rio, Rates of convergence for minimal distances in the central limit theorem under projective criteria, Electron. J. Probab. 14 (2009), 978-1011.[9] Marie-Christine Düker, Sample autocovariance operators of Hilbert space-valued linear processes, 2021.[10] Mohamed El Machkouri, Berry-Esseen’s central limit theorem for non-causal linear processes in Hilbert space, Afr. Diaspora J. Math. (N.S.) 10(2) (2010), 81-86.[11] F. Götze, Asymptotic expansions for bivariate von Mises functionals, Z. Wahrsch. Verw. Gebiete 50 (1979), 333-355.[12] Israel Gohberg, Seymour Goldberg and Marinus Kaashoek, Basic Classes of Linear Operators, Birkhäuser, 2012.[13] Friedrich Götze and Vladimir V. Ulyanov, Uniform approximations in the CLT for balls in Euclidian spaces, Sonderforschungsbereich 343, 2000.[14] F. Götze, On the rate of convergence in the central limit theorem in Banach spaces, Ann. Probab. 14 (1986), 922-942.[15] Moritz Jirak, On non-uniform Berry-Esseen bounds for time series, Probab. Math. Statist. 35(1) (2015), 1-14.[16] Moritz Jirak, Rate of convergence for Hilbert space valued processes, Bernoulli 24 (2018), 202-230.[17] Florence Merlevède, Magda Peligrad and Sergey Utev, Sharp conditions for the CLT of linear processes in a Hilbert space, J. Theoret. Probab. 10(3) (1997), 681-693.[18] S. V. Nagaev, On accuracy of normal approximation for distribution of sum of independent Hilbert space valued random variables, Probability Theory and Mathematical Statistics: Proceedings of the Fourth USSR-Japan Symposium, held at Tbilisi, USSR, August 23-29, 1982, Springer Berlin Heidelberg, 1983, pp. 461-473.[19] Yuri V. Prokhorov and Vladimir V. Ulyanov, Some approximation problems in statistics and probability, Limit Theorems in Probability, Statistics and Number Theory, Honor of Friedrich Götze, Springer Berlin Heidelberg, 2013, pp. 235-249.[20] V. V. Petrov, Sums of Independent Random Variables, De Gruyter, Berlin, Boston, 1975. https://doi.org/10.1515/9783112573006.[21] Vygantas I. Paulauskas, On the rate of convergence in the central limit theorem in some Banach spaces, Teoriya Veroyatnostei i ee Primeneniya 21(4) (1976), 775-791.[22] WanSoo Rhee and Michel Talagrand, On Berry-Esseen type bounds for m-dependent random variables valued in certain Banach spaces, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 58(4) (1981), 433-451.[23] V. V. Sazonov, V. V. Ulyanov and B. A. Zalesskii, Estimation asymptotiquement précise de la précision de l’approximation gaussienne dans l’espace de Hilbert, Dans : Statistiques multivariées et probabilities, Academic Press, 1989, pp. 457-483.[24] Charles Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Probability Theory, University of California Press, Vol. 2, 1972, pp. 583-603.[25] Aleksandr Nikolaevich Tikhomirov, On the accuracy of the normal approximation of the probability of hitting a ball of sums of weakly dependent Hilbert space valued random variables I, Theory Probab. Appl. 36(4) (1991), 699-710.[26] V. V. Yurinskii, On the accuracy of normal approximation of the probability of hitting a ball, Theory Probab. Appl. 27(2) (1983), 280-289.[27] Oleksandr Zadorozhnyi, Contributions to the theoretical analysis of the algorithms with adversarial and dependent data, Thèse de Doctorat, Universität Potsdam (Allemagne), 2021.[28] Boris Andreevich Zalesskii, Vyacheslav Vasil’evich Sazonov and Vladimir Vasilievich Ul’yanov, A precise estimate of the rate of convergence in the central limit theorem in Hilbert space, Mathematics of the USSR-Sbornik 68(2) (1991), 453-482.[29] Boris Andreevich Zalesskii, On the accuracy of normal approximation in Banach spaces, Theory Probab. Appl. 33(2) (1989), 239-247.[30] B. A. Zalesskii, V. V. Sazonov and V. V. Ul’yanov, A regular estimate of the accuracy of normal approximation in Hilbert space, Theory Probab. Appl. 33(4) (1988), 700.[31] T. M. Zuparov, Estimates for the rate of convergence in the central limit theorem for absolutely regular random variables with values in some Banach spaces, Doklady Akademii Nauk, Russian Academy of Sciences, 1983, pp. 1042-1045.