ON THE DIOPHANTINE EQUATION
Based on the Fibonacci-Sylvester algorithm, we introduce a new elementary method in terms of the Fibonacci-Sylvester algorithm for studying the Erdős-Straus conjecture (ESC), that is, the case of all positive integer solutions of the Diophantine equation . Here, only elementary methods are used to provide the general solution expressions for its all positive integer solutions. Using this new method, we provide a new proof of the Mordell theorem, which states that has a expression as the sum of three unit fractions for every natural number n, except possibly for the numbers of the form with In addition, we also explore the situation of the Erdős-Straus conjecture when n(mod 1320) and n(mod 9240), and give the corresponding general solutions for all positive integer solutions of the equation, which is helpful for solving the problem of ESC and promoting the related research.
Egyptian fraction, Erdős-Strauss conjecture, Fibonacci-Sylvester algorithm, integral solution.
Received: April 20, 2024; Revised: July 15, 2024; Accepted: August 10, 2024; Published: August 24, 2024
How to cite this article: Xiaodan Yuan, On the Diophantine equation , JP Journal of Algebra, Number Theory and Applications 63(5) (2024), 459-480.
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] P. Erdős, Az egyenlet egész számú megoldásairól (on a Diophantine equation), Mat. Lapok 1 (1950), 192-210.[2] Z. Ke and Q. Sun, Some conjecture and problem in number theory, Chinese Journal of Nature (in Chinese), 7 (1979), 411-413.[3] Yamamoto, On the Diophantine equations K. Men. Fac. Sci. Kyushu University, Ser. A., 19 (1965), 37-47.[4] N. Franceschine, Egyptian Fractions, Sonoma State Coll., 1978.[5] A. Swett, The Erdős-Straus conjecture, Rev. 10 (1999), 28-99.[6] S. E. Salez, The Erdős-Straus conjecture new modular equations and checking up to arxiv preprint arxiv:1406.6307 (2014).[7] L. J. Mordell, Diophantine Equations, Academic Press, London/New York, 1969.[8] L. A. Rosati, On the Diophantine equation (English), Sull’equazione diofantea (original in Italian), Bollettino Della Unione Matematica Italiana, 3 (1954), 59-63.[9] R. C. Vaughan, On a problem of Erdős-Straus and Scinzel, Mathematica 17 (1970), 193-198.[10] R. K. Guy, Egyptian Fractions, §D11 in Unsolved Problems in Number Theory, 2nd ed., New York: Springer-Verlag, 1994, pp. 158-166.[11] M. H. Ahmadi and M. N. Bleicher, On the conjectures of Erdős and Straus, and Sipiński on Egyptian fractions, International Journal of Mathematical and Statistical Sciences 7(2) (1998), 169-185.[12] L. Bernstein, To the solution of the Diophantine equation particularly in the case of the (English), Zur Losung der diophantischen Gieichung insbesondere im Fall Journal fur die Reine und Angewandte Mathematik 211 (1962), 1-10.[13] D. G. Terzi, On a conjecture by Erdős-Straus, Nordisk Tidskr, Informations- Behandling (BIT), 11 (1971), 212-216.[14] M. B. Crawford, On the Number of Representations of One as the Sum of Unit Fractions, Masters of Science in Mathematics, Virginia Polytechnic Institute and State University, 2019.[15] M. D. Giovanni, S. Gallipoli and M. Gionfriddo, Historical origin and scientific development of graphs, hypergraphs and design theory, Bulletin of Mathematics and Statistics Research 7 (2019), 19-23.[16] C. Elsholtz and T. Tao, Counting the number of solutions to Erdős-Straus equations on unit fractions, J. of Australasian Math. Society 94(1) (2013), 50-105.[17] J. Ghanouchi, An analytic approach of some conjectures related to Diophantine equations, Bulletin of Mathematical Sciences and Applications 1 (2012), 29-40.[18] J. Ghanouchi, About the Erdős conjecture, International Journal of Science and Research 4(2) (2015), 341-341.[19] D. J. Negash, Solutions to Diophantine equation of Erdős-Straus conjecture, arxiv preprint arxiv.1812.05684 (2018).[20] J. W. Sander, and Iwaniec’ half dimensional sieve, J. of Number Theory 46 (1994), 123-136.[21] M. Dunton and R. E. Grimm, Fibonacci on Egyptian Fractions, Fibonacci Quarterly 4 (1966), 339-354. Translation of Fibonacci’s original work, Liber Abacci (1202).[22] J. J. Sylvester, On a point in the theory of vulgar fractions, Amer. J. Math. 3 (1880), 332-335.[23] W. A. Webb, On the Diophantine equation Časopis pro pěstovánĺ matematiky 101(4) (1967), 360-365.[24] E. S. Croot III, Egyptian Fractions, Ph. D. Thesis, 1994.[25] G. G. Martin, The distribution of prime primitive roots and dense Egyptian fractions, Ph. D. Thesis, 1997.