THE SOME BLAISE ABBO (SBA) PLUS METHOD APPLIED TO NON-LINEAR FRACTIONAL TIME NAVIER-STOKES EQUATIONS IN DIMENSION 3 IN THE SENSE OF CAPUTO
In this paper, we solve some time fractional Navier-Stokes equations of order with in dimension 3 in the sense of Caputo by the SBA plus method. This method is based on two principles (successive approximations, Picard) and the Adomian method, and converges rapidly to the exact solution, of course, if it exists in the functional space of the problem posed.
Some Blaise Abbo (SBA) plus method, fractional Navier-Stokes equations, Caputo derivative.
Received: April 12, 2024; Revised: June 6, 2024; Accepted: June 13, 2024; Published: August 12, 2024
How to cite this article: Oumar MADAI, Germain KABORE, DJERAYOM Luc, Bakari Abbo and Ousséni SO, The Some Blaise Abbo (SBA) plus method applied to non-linear fractional time Navier-Stokes equations in dimension 3 in the sense of Caputo, Far East Journal of Applied Mathematics 117(2) (2024), 133-148. http://dx.doi.org/10.17654/0972096024007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. A. Ragab, K. M. Hemida, M. S. Mohamed, M. A. El Salam and N. City, Solution of time-fractional Navier-Stokes equation by using homotopy analysis method, Gen. Math. Notes 13(2) (2012), 13-21.[2] A. Kadem and D. Baleanu, Analytical method based on Walsh function combined with orthogonal polynomial for fractional transport equation, Commun. Nonlinear Sci. Numer. Simul. 15(3) (2010), 491-501.[3] B. Abbo, O. So, G. Barro and B. Some, A new Numerical algorithm for solving nonlinear partial differential equations with initial and boundary conditions, Far East J. Appl. Math. 28(1) (2007), 37-52.[4] Kamate Adama, Bationo Jeremie Yiyureboula, Djibet Mbaiguesse and Youssouf Pare, Analytical solutions of classical and fractional Navier-Stokes equations by the SBA method, Journal of Mathematics Research 14(4) (2022), 20-32.https://doi.org/10.5539/jmr.v14n4p20.[5] A. Khalouta and A. Kadem, A new numerical technique for solving Caputo time-fractional biological population equation, AIMS Mathematics 4(5) (2019), 1307-1319.[6] Blaise SOME, Méthode SBA de résolution des modèles mathématiques en environnement, Éditions Universitaires Européennes, 2018.[7] B. Abbo, Nouvel algorithme numérique de résolution des équations différentielles ordinaries (EDO) et des équations aux dérivées partielles (EDP) non linéaires, Thèse de Doctorat unique, Université de Ouagadougou, UFR/SEA, Département Mathématique et Informatique, Burkina Faso, 2007.[8] D. Kumar, J. Singh and S. Kumar, A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid, J. Assoc. Arab Univ. Basic Appl. Sci. 17(1) (2015), 14-19.[9] E. S. Moustafa and S. Ahmed, On the generalized Navier-Stokes equations, J. Appl. Math. Comput. 156(1) (2004), 287-293.[10] G. KABORE, W. SOME, M. KÉRÉ, O. SO and B. SOME, Solving some fractional ordinary differential equations by SBA method, Journal of Mathematics Research 15(1) (2023), 47-56. doi:10.5539/jmr.v15n1p47.[11] Germain KABORE, KÉRÉ Moumini, Windjiré SOME, Ousséni SO and Blaise SOME, Solving some fractional equations, in the sense of Riemann-Liouville, of Navier-Stokes by the numerical method SBA plus, International Journal of Numerical Methods and Applications 23(2) (2023), 209-228.http://dx.doi.org/10.17654/0975045223012.[12] G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Math Comput. Modelling 13(7) (1990), 17-43.[13] G. A. Birajdar, Numerical solution of time fractional Navier-Stokes equation by discrete Adomian decomposition method, Nonlinear Eng. 3(1) (2014), 21-26.[14] K. Abbaoui, The foundations of the Adomian decompositional method and its application to the solution of problems in biology and medicine, Doctoral Thesis, University of Paris VI, 1995.[15] Rasool Shah, Hassan Khan, Dumitru Baleanu, Poom Kunam and Muhammad Arif, The Analytical Investigation of Time-fractional Multi-dimensional Navier-Stokes Equation, Elsevier, 2020. https://doi.org/10.1016/j.aej.2020.03.029.[16] Tamouza Aicha and Younes Selma, Dérivation fractionnaire et applications aux inclusions différentielles, Université Mohammed Seddik Ben Yahia-Jijel, Algérie, Mémoire de Master Promotion 2017/2018.[17] BEN BELABBAS Soumya, Dérivées fractionnaires: théorie et exemples, Mémoire de Master soutenu en 2021, Université MOHAMED KHIDER, BISKRA, Algérie.[18] S. Kumar, D. Kumar, S. Abbasbandy and M. M. Rashidi, Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method, Ain Shams Eng. J. 5(2) (2014), 569-574.[19] S. Momani and Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput. 177(2) (2006), 488-494.[20] V. B. L. Chaurasia and D. Kumar, Solution of the time-fractional Navier-Stokes equation, Gen. 4(2) (2011), 49-59.[21] Diego Chamorro, Introduction aux équations de Navier-Stokes, A paraître, 2023. hal-03487812v2.[22] MENASRI Youssouf, Sur les solutions de Navier-Stokes fractionnaires en temps dans Université Oum-El BOUAGHI, Mémoire de Master soutenu le 06/07/2021.[23] NEFNAF ASMA KERROUCHE IBTISSEM, Résolution des équations différentielles partielles d’ordre fractionnaire moyennant des approches semi-analytique, Mémoire de Master soutenu, Université Mohamed El-Bachir El-Ibrahimi Bordj Bou Arreridj, Algérie, 2021.