ALGEBRAIC CURVES WITH SMALL GENUS AND SHARP CHABAUTY-COLEMAN’S BOUND
The Chabauty-Coleman bound gives an upper bound of the set of rational points on an algebraic curve whose Mordell-Weil rank of its Jacobian is less than its genus. In this paper, we construct algebraic curves of small genus which meet this bound in a prime p of good reduction.
sharp curve, Jacobian, rank Mordell-Weil, Coleman bound
Received: February 9, 2024; Revised: March 7, 2024; Accepted: March 29, 2024; Published: May 23, 2024
How to cite this article: Regis Freguin Babindamana, Brice Miayoka Moussolo and Bossoto, Algebraic curves with small genus and sharp Chabauty-Coleman’s bound, JP Journal of Algebra, Number Theory and Applications 63(4) (2024), 363-381. https://doi.org/10.17654/0972555524022
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] André Weil, L’arithmétique sur les courbes algébriques, Acta Math. 52(1) (1929), 281-315.[2] Claude Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882-885.[3] Daniel M. Gordon and David J. W. Grant, Computing the Mordell-Weil rank of Jacobians of curves of genus two, Transactions of the American Mathematical Society 337(2) (1993), 807-824.[4] David Grant, A curve for which Coleman’s effective Chabauty bound is sharp, Proceedings of the American Mathematical Society 122(1) (1994), 317-319.[5] Edward F. Schaefer, 2-descent on the Jacobians of hyperelliptic curves, Journal of Number Theory 51(2) (1995), 219-232.[6] Faltings Gerd, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern [Théorèmes de finitude pour les variétés abéliennes sur les corps de nombres], Inventiones Mathematicae (en allemand) 73(3) (1983), 349-366.[7] Louis J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc. Camb. Phil. Soc. 21 (1922), 179-192.[8] Maria Inés de Frutos Fernaandez and Sachi Hashimoto, Computing rational points on rank 0 genus hyperelliptic curves, 2019, pp. 1-10. arXiv, 1909048080v2[9] W. McCallum and B. Poonen, The Method of Chabauty and Coleman, Explicit Methods in Number Theory, In: Panoramas et Synthèses, Société Mathématique de France, Paris 36 (2012), 99-117.[10] Michael Stoll, Independence of rational points on twists of a given curve, Compositio Mathematica 142(5) (2006), 04.[11] Michael Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98(3) (2001), 245-277.[12] Neal Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, 2nd ed., Graduate Texts in Mathematics, Vol. 58, Springer-Verlag, New York, 1984.[13] Olivier Ramaré and Robert Rumely, Primes in arithmetic progressions, Mathematics of Computation 65(213) (1996), 397-425.[14] Robert F. Coleman, Effective Chabauty, Duke Math. J. 52(3) (1985), 765-770.[15] Stevan Gajovic, Curves with sharp Chabauty-Coleman bound, 2020, pp. 11-24. arXiv, 2009.01084v2[16] A. V. Sutherland, Genus 3 hyperelliptic curves.https://math.mit.edu/~drew/genus3curves.html. [17] Wieb Bosma, John Cannon and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24(3-4) (1997), 235-265.[18] Yann Bugeaud, Maurice Mignotte, Samir Siksek, Micheal Stoll and Szabolcs Tengely, Integral points on hyperelliptic curves. Available at arXiv:0801.4459v4 [math.NT].[19] B. Creutz, Explicit descent in the Picard group of a cyclic cover of the projective line, ANTS X-Proceedings of the Tenth Algorithmic Number Theory Symposium, Volume 1 of Open Book Ser., Math. Sci. Publ., Berkeley, CA, 2013, pp. 295-315.[20] Jennifer S. Balakrishnan, Francesca Bianchi, Victoria Cantoral-Farfán, Mirela Çiperiani and Anastassia Etropolski, Chabauty-Coleman experiments for genus 3 hyperelliptic curves, Research Directions in Number Theory, Women in Numbers IV, Proceedings of the Women in Numbers, WIN4 Workshop, Banff International Research Station, Banff, Alberta, Canada, August 14-18, 2017, pp. 67-90, Springer, Cham, 2019.[21] B. Poonen and E. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math. 488 (1997), 141-188.