ON EXTENSIVE SUBSEMIMODULES OVER ZERO-SUM SEMIRINGS
We characterize injective semimodules, Baer injective semimodules, z-injective semirings, z-extensive ideals and θt-θt-extensive subsemimodules. We also study relationships between z-extensive ideals, θt-extensive subsemimodules and their annihilators.
zero-sum semiring, injective semimodule, Baer injective semimodule, z-extensive ideal, z-injective semiring.
Received: December 26, 2022; Revised: April 14, 2023; Accepted: May 10, 2023; Published: May 23, 2024
How to cite this article: Lamine Ngom, Mame Demba Cisse, Landing Fall and Jean Raoul Tsiba, On extensive subsemimodules over zero-sum semirings, JP Journal of Algebra, Number Theory and Applications 63(4) (2024), 313-327. https://doi.org/10.17654/0972555524019
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] P. J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416.[2] R. E. Atani and S. E. Atani, Ideals theory in commutative semirings, A Republicii Moldova Mathematica 2(57) (2008), 14-23.[3] J. N. Chaudhari and D. R. Bonde, On direct sum of partitioning subsemimodules of semimodules over semirings, J. Adv. Res. Pure Math. 4(1) (2012), 81-88.[4] J. S. Golan, Semirings and their Applications, University of Haifa, Haifa, Israel, 1999.[5] T. K. Muhkerjee, M. K. Sen and Shamik Ghosh, Chain conditions on semirings, Internat. J. Math. Math. Sci. 19(2) (1996), 321-326.[6] S. N. Il’in, On semirings satisfying the Baer criterion, Russian Math. (Iz. VUZ) 57(3) (2013), 26-31.[7] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge University Press, New York, 2003.[8] H. E. Stone, Ideals in halfrings, Proc. Amer. Math. Soc. 33(1) (1972), 8-14.[9] H. Wang, Injective hulls of semimodules over additively-idempotent semirings, Semigroup Forum 48 (1994), 377-379.[10] R. Wisbauer, M. F. Yousif and Y. Zhou, Ikeda-Nakayama modules, Contributions to Algebra and Geometry 43 (2002), 111-119.