CLOSURE OPERATION EXTENDED TO REES RING AND ASYMPTOTIC PRIME DIVISORS
Let A be a Noetherian ring and I be a nonzero ideal of A. Let be the generalized Rees ring of the ideal I. Let be a semi-prime operation on the set of ideals of A The sequence stabilizes in for large enough integers n under certain conditions. We first show in this paper, examples of semi-prime operations and such that for all integers n, and reveal that when n is large enough in Finally, we extend these results to filtrations.
Rees ring, closure operation, prime divisors.
Received: December 12, 2023; Revised: February 27, 2024; Accepted: March 15, 2024
How to cite this article: K. A. Essan, Closure operation extended to Rees ring and asymptotic prime divisors, JP Journal of Algebra, Number Theory and Applications 63(4) (2024), 297-311. https://doi.org/10.17654/0972555524018
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] M. Brodmann, Asymptotic stability of Proc. Amer. Math. Soc. 74 (1979), 16-18.[2] H. Dichi and D. Sangaré, Filtrations, asymptotic and pruferian closures, cancellation laws, Proc. Amer. Math. Soc. 113(3) (1991), 617-624.[3] Essan K. Ambroise, Opérations de clôture sur les sous-modules d’un module, Annales Mathématiques Africaines 3 (2012), 89-100.[4] Essan K. Ambroise, Filtrations, opérations de clôture et la suite Annales Mathématiques Africaines 4 (2013), 117-124.[5] K. A. Essan, A. Abdoulaye, D. Kamano and E. D. Akeke, -sporadic prime ideal and superficiels elements, Journal of Algebra and Related Topics 5(2) (2017), 35-45.[6] K. A. Essan, Filtration, asymptotic -prime divisors and superficial elements, Journal of Algebra and Related Topics 9(1) (2021), 159-167.[7] D. Kirby, Closure operations on ideals and submodules, J. London Math. Soc. 44 (1969), 283-291.[8] S. McAdam, Asymptotic prime divisors, Lecture Notes in Mathematics, Volume 1023, Springer-Verlag, New York, 1983.[9] S. McAdam, Primes associated to an ideal, contemporary mathematics, Amer. Math. Soc., Providence, Vol. 102, 1989.[10] M. Nagata, Local rings, Interscience Tracts, No. 13, Interscience, New York, 1961.[11] J. S. Okon and L. J. Ratliff Jr., Filtrations, closure operations and prime divisors, Math. Proc. Camb. Phil. Soc. 104 (1988), 31-46.[12] L. J. Ratliff Jr., Notes on essentially power filtration, Michigan Math J. 26 (1973), 313-324.[13] L. J. Ratliff Jr., On prime divisors of n large, Michigan Math. J. 23 (1976), 337-352.[14] L. J. Ratliff Jr., On asymptotic prime divisors, Pacific Journal of Mathematics 111(2) (1984), 395-413.[15] L. J. Ratliff Jr., Asymptotic prime divisors and integral extension rings, Journal of Algebra 95 (1985), 409-431.