A REVIEW OF BIVARIATE COM-POISSON DISTRIBUTIONS INTO TYPE 1, TYPE 2 AND TYPE 3 MODELS
This paper reviews bivariate COM-Poisson laws as the type 1, type 2 and type 3 models. The COM-Poisson distributions of type 1, type 2 and type 3 are shown to be members of the family of bivariate Poisson distributions. Functional relationships among them are also established.
univariate COM-Poisson distribution, bivariate COM-Poisson distribution.
Received: March 28, 2024; Revised: April 29, 2024; Accepted: May 9, 2024
How to cite this article: Emmanuel NGUESSOLTA, Réolie Foxie MIZELE KITOTI, Rufin BIDOUNGA and Dominique MIZERE, A review of bivariate COM-Poisson distributions into type 1, type 2 and type 3 models, Far East Journal of Theoretical Statistics 68(2) (2024), 237-254. https://doi.org/10.17654/0972086324014
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] P. C. Batsindila Nganga, R. Bidounga and D. Mizère, The covariance structure of the bivariate weighted Poisson distribution and application to the Aleurodicus data, Afrika Statistika 14(2) (2019), 1999-2017.[2] P. Berkhout and E. Plug, A bivariate count data model using conditional probabilities, Statist. Neerlandica 58(3) (2004), 349-364.[3] R. Bidounga, E. G. B. Mandangui Maloumbi, R. F. Mizélé Kitoti and D. Mizère, The new bivariate Conway-Maxwell-Poisson distribution obtained by crossing method, International Journal of Statistics and Probability 9(6) (2020), 7032-7040.[4] R. Bidounga, P. C. Batsindila Nganga, L. Niéré and D. Mizère, A note on the (weighted) bivariate Poisson distribution, European Journal of Pure and Applied Mathematics 14(1) (2021), 192-203.[5] R. Bidounga, M. Koukouatikissa Diafouka, R. F. Mizélé Kitoti and D. Mizère, The bivariate extended Poisson distribution of type 1, European Journal of Pure and Applied Mathematics 14(4) (2021), 1517 1520.[6] R. W. Conway and W. L. Maxwell, A queuing model with state dependent service rates, J. Ind. Eng. 12 (1962), 132-136.[7] L. L. Elion, M. Koukouatikissa Diafouka, R. Bidounga, C. G. Louzayadio, D. Mizèee, R. Makany and G. Kissita, The bivariate weighted Poisson distribution: Statistical study of arterial hypertension data according to the blood sugar level, Far East Journal of Theoretical Statistics 52(5) (2016), 365 393.[8] P. Holgate, Estimation for the bivariate Poisson distribution, Biometrika 51 (1964), 241-245.[9] Kimberly F. Sellers, The Conway-Maxwell-Poisson Distribution, Cambridge University Press, 2023.[10] C. C. Kokonendji, D. Mizère and N. Balakrishnan, Connections of the Poisson weight function to overdispersion and underdispersion, Journal of Statistical Planning and Inference 138 (2008), 1287-1296.[11] J. Lakshminarayana, S. N. N. Pandit and K. Srinivasa Rao, On a bivariate Poisson distribution, Communication in Statistics Theory and Methods 28(2) (1999), 267 276.[12] C. G. Louzayadio, E. Nguessolta, M. Koukouatikissa Diafouka and D. Mizère, The bivariate extended Poisson distribution of type 2, Journal of Computer Sciences and Applied Mathematics 5(2) (2023), 89-102.[13] S. H. Ong, R. C. Gupta, T. Ma and S. Z. Sim, Bivariate Conway-Maxwell Poisson distribution with given marginals and correlation, Journal of Statistical Theory and Practice 15 (2021), 10.[14] I. O. Sarmanov, Generalized normal correlation and two dimensional Frechet classes, Soviet Math Doki 7 : 596-599, English translation; Russian original in Doki. Akad. Nauk. SSSR 168 (1966), 33-35.[15] G. Shmueli, T. P. Minka, J. B. Kadane, S. Borle and P. Boatwright, A useful distribution for fitting discrete data: Revival of Conway-Maxwell-Poisson distribution, Appl. Stat. 54(1) (2005), 127-142.