A NOTE ON THE MONOGENITY OF SOME TRINOMIALS OF TYPE
Some former experiences lead us to investigate the number of inequivalent generators of power integral bases in certain number fields generated by a root of monogenic polynomials. The question is, whether there exist any other generator in addition to the root of the polynomial? We describe the results of our calculations in case of monogenic trinomials of type .
monogenity, power integral basis, trinomials, Thue equations.
Received: February 26, 2024; Revised: April 6, 2024; Accepted: April 8, 2024
How to cite this article: István Gaál, A note on the monogenity of some trinomials of type , JP Journal of Algebra, Number Theory and Applications 63(3) (2024), 265-279. http://dx.doi.org/10.17654/0972555524016
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] B. J. Birch and J. R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. 24 (1972), 385-394.[2] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan and S. M. Watt, eds., MAPLE, Reference Manual, Watcom Publications, Waterloo, Canada, 1988.[3] R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Göttingen Abhandlungen 23 (1878), 1-23.[4] L. El Fadil, On integral bases and monogeneity of pure sextic number fields with nonsquarefree coefficients, J. Number Theory 228 (2021), 375-389.[5] L. El Fadil and I. Gaál, Integral bases and monogenity of pure number fields with non-square free parameters up to degree 9, Tatra Mt. Math. Publ. 83 (2023), 61-86.[6] L. El Fadil and I. Gaál, On integral bases and monogenity of pure octic number fields with non-square free parameters, arXiv:2202.04417.[7] L. El Fadil and I. Gaál, On index divisors and monogenity of certain quartic number fields defined by arXiv:2204.03226.[8] I. Gaál, Diophantine equations and power integral bases, Theory and Algorithms, 2nd ed., Birkhäuser, Boston, 2019.[9] I. Gaál, On the monogenity of totally complex pure sextic fields, JP Journal of Algebra, Number Theory and Applications 60 (2023), 85-96.[10] I. Gaál, On the monogenity of totally complex pure octic fields, arXiv:2402.09293.[11] I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations in quartic number fields, J. Symbolic Comput. 16 (1993), 563-584.[12] I. Gaál, A. Pethő and M. Pohst, Simultaneous representation of integers by a pair of ternary quadratic forms - with an application to index form equations in quartic number fields, J. Number Theory 57 (1996), 90-104.[13] K. Győry, Sur les polynômes a coefficients entiers et de discriminant donne, III, Publ. Math. (Debrecen) 23 (1976), 141-165.[14] H. Hasse, Zahlentheorie, Akademie-Verlag, Berlin, 1963.