ANALYTICAL AND SINGULAR EXACT SOLUTIONS OF THE (3+1)-DIMENSIONAL MODIFIED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV EQUATION
The improved sub-equation method is employed to construct exact solutions of (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation. By studying the dynamical behavior and exact solutions of the sub-equation, we obtain more types of exact solutions such as analytical bright and dark solitons, analytical kink or anti-kink solitons, analytical and singular periodic waves. In addition, some selected solutions are visualized through 2D and 3D simulations in order to obtain the best physical characterization of the obtained results. This method is very effective and can be used to study other nonlinear problems.
improved sub-equation method, mKdV-ZK equation, bifurcation, soliton solution, periodic solution.
Received: December 14, 2023; Accepted: February 2, 2024; Published: March 6, 2024
How to cite this article: Dahe Feng, Jibin Li and Jianjun Jiao, Analytical and singular exact solutions of the (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation, Far East Journal of Applied Mathematics 117(1) (2024), 19-47. http://dx.doi.org/10.17654/0972096024002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] G. Iskenderoglu and D. Kaya, Chirped self-similar pulses and envelope solutions for a nonlinear Schrödinger’s in optical fibers using Lie group method, Chaos Solitons Fract. 162 (2022), 112453.[2] M. Moustafa, A. M. Amin and G. Laouini, New exact solutions for the nonlinear Schrödinger’s equation with anti-cubic nonlinearity term via Lie group method, Optik. 248 (2021), 168205.[3] S. Rekha, R. R. Rani, L. Rajendran and M. E. G. Lyons, A new method to study the nonlinear reaction-diffusion process in the electroactive polymer film using hyperbolic function method, Int. J. Electrochem. Sci. 17(12) (2022), 221261.[4] H. U. Rehman, A. U. Awan, E. M. Tag-ElDin, S. E. Alhazmi, M. F. Yassen and R. Haider, Extended hyperbolic function method for the -dimensional nonlinear soliton equation, Results Phys. 40 (2022), 105802.[5] R. Silambarasan and K. S. Nisar, Doubly periodic solutions and non-topological solitons of -dimension Wazwaz Kaur Boussinesq equation employing Jacobi elliptic function method, Chaos Solitons Fract. 175(1) (2023), 113997.[6] A. Hussain, Y. Chahlaoui, F. D. Zaman, T. Parveen and A. M. Hassan, The Jacobi elliptic function method and its application for the stochastic NNV system, Alex Eng. J. 81 (2023), 347-359.[7] S. Mostafa, R. El-Barkouky, H. M. Ahmed and I. Samir, Investigation of chirped optical solitons perturbation of higher order NLSE via improved modified extended tanh function approach, Results Phy. 52 (2023), 106760.[8] F. D. Emmanuel, W. K. T. Gildas, I. D. Zacharie, K. J. Aurlien, P. N. Jean and N. Laurent, Exotical solitons for an intrinsic fractional circuit using the sine-cosine method, Chaos Solitons Fract. 160 (2022), 12253.[9] S. W. Yao, S. Behera, M. Inc, H. Rezazadeh, J. P. S. Virdi, W. Mahmoud, O. A. B. Arqub and M. S. Osman, Analytical solutions of conformable Drinfeld-Sokolov-Wilson and Boiti Leon Pempinelli equations via sine-cosine method, Results Phy. 42 (2022), 105990.[10] E. M. E. Zayed, M. E. M. Alngar and M. El-Horbaty, Optical solitons in fiber Bragg gratings having Kerr law of refractive index with extended Kudryashov’s method and new extended auxiliary equation approach, Chinese J. Phys. 66 (2020), 187-205.[11] E. M. Özkan and M. Akar, Analytical solutions of -dimensional time conformable Schrödinger equation using improved sub-equation method, Optik. 267 (2022), 169660.[12] H. Li, K. Wang and J. Li, Exact traveling wave solutions for the Benjamin-Bona-Mahony equation by improved Fan sub-equation method, Appl. Math. Model 37(14-15) (2013), 7644-7652.[13] A. K. M. K. S. Hossain and M. A. Akbar, Traveling wave solutions of Benny Luke equation via the enhanced -expansion method, Ain. Shams Eng. J. 12(4) (2021), 4181-4187.[14] Y. Li, R. Yao and S. Lou, An extended Hirota bilinear method and new wave structures of -dimensional Sawada-Kotera equation, Appl. Math. Lett. 145 (2023), 108760.[15] L. Li, C. Duan and F. Yu, An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (mKdV) equation, Phys. Lett. A 383(14) (2019), 1578-1582.[16] Y. Yang, T. Xia and T. Liu, Darboux transformation and exact solution to the nonlocal Kundu-Eckhaus equation, Appl. Math. Lett. 141 (2023), 108602.[17] H. Chen and S. Zheng, Darboux transformation for nonlinear Schrödinger type hierarchies, Phys. D 454 (2023), 133863.[18] Y. Yang, T. Suzuki and J. Wang, Bäcklund transformation and localized nonlinear wave solutions of the nonlocal defocusing coupled nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul. 95 (2021), 105626.[19] F. Verheest, R. L. Mace, S. R. Pillay and M. A. Hellberg, Unified derivation of Korteweg-de Vries-Zakharov-Kuznetsov equations in multispecies plasmas, J. Phys. A: Math. Gen. 35(3) (2002), 795.[20] M. H. Islam, K. Khan, M. A. Akbar and M. A. Salam, Exact traveling wave solutions of modified kdV-Zakharov-Kuznetsov equation and viscous Burgers equation, Springer Plus 3 (2014), 105.[21] M. N. Alam, M. G. Hafez, M. A. Akbar and H. O. Roshid, Exact traveling wave solutions to the -dimensional mKdV-ZK and the -dimensional Burgers equations via -expansion method, Alex. Eng. J. 54(3) (2015), 635-644.[22] K. U. H. Tariq and A. R. Seadawy, Soliton solutions of -dimensional Korteweg-de Vries Benjamin-Bona-Mahony, Kadomtsev-Petviashvili Benjamin-Bona-Mahony and modified Korteweg de Vries-Zakharov-Kuznetsov equations and their applications in water waves, J. King Saud. Univ. Sci. 31(1) (2019), 8-13.[23] H. U. Rehman, A. U. Awan, A. M. Hassan and S. Razzaq, Analytical soliton solutions and wave profiles of the -dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation, Results Phy. 52 (2023), 106769.[24] D. Feng and G. Luo, The improved Fan sub-equation method and its application to the SK equation, Appl. Math. Comput. 215(5) (2009), 1949-1967.[25] P. Lawrence, Differential Equations and Dynamical Systems, New York, Springer-Verlag, 1991.[26] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, New York, Springer-Verlag, 1983.[27] D. Luo, X. Wang, D. Zhu and M. Hao, Bifurcation Theory and Methods of Dynamical Systems, Singapore, World Scientific, 1997.[28] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Berlin, Springer-Verlag, 1954.