ON MAXIMAL ECCENTRIC DOMINATION NUMBER OF GRAPHS
Eccentric dominating set D of G is said to be maximal eccentric dominating set, if V(G) - D is not an eccentric dominating set of G. The cardinality of maximal eccentric dominating set is the maximal eccentric domination number. In this article, we determine maximal eccentric domination number of some standard graphs and also establish some properties of maximal eccentric domination number.
eccentric dominating set, maximal eccentric dominating set, maximal eccentric domination number.
Received: January 28, 2024; Revised: February 22, 2024; Accepted: March 5, 2024; Published: March 9, 2024
How to cite this article: A. S. Ashwini and D. Soner Nandappa, On maximal eccentric domination number of graphs, Advances and Applications in Discrete Mathematics 41(3) (2024), 223-229. http://dx.doi.org/10.17654/0974165824016
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] Anabel Gamorez and Sergio Canoy Jr., Monophonic eccentric G domination numbers of graphs, European Journal of Pure and Applied Mathematics 15(2) (2022), 635-645.[2] A. S. Ashwini, H. Ahmed and N. D. Soner, On domination Zagreb polynomials of graphs and some graph operations, International Journal of Mathematics Trends and Technology 68(2) (2022), 66-74.[3] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247-261.[4] F. Harary, Graphs Theory, Addison-Wisley Publishing Co., Reading Mass, 1969.[5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, New York, Marcel Dekkar, Inc., 1998.[6] S. M. Hedetniemi, S. T. Hedetniemi, R. Laskar, A. A. McRae and C. Wallis, Domination partition of graphs, J. Combin. Inform. Systems Sci. 34(1-4) (2009), 183-192.[7] T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Eccentric domination in graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology 2(2) (2010), 1-16.[8] V. R. Kulli, The global maximal domination number of graphs, International Journal of Mathematics and its Applications 3(4) (2015), 75-76.[9] V. R. Killi and B. Janakiram, The Maximal Domination Number of a Graphs, Graph Theory Notes of New York, New York Academy of Sciences 33(2) (1997), 11-13.[10] M. R. Rajesh Kanna, R. Jagadeesh and Mohammad Reza Farahani, Minimum covering Seidel energy of a graph, J. Indones. Math. Soc. 22(1) (2016), 71-82.[11] I. Rusu and J. Spinrad, Domination graphs: examples and counterexamples, Discrete Applied Mathematics 110(2-3) (2001), 289-300.[12] V. S. Thakur and S. Shobha, Domination and it’s type in graphs theory, Journal of Emerging Technologies and Innovative Research 7(3) (2020), 1549-1557.