LIE-RINEHART ALGEBRAS ON KAEHLER DIFFERENTIAL AND POISSON ALGEBRAS COHOMOLOGY
We establish that Poisson cohomology is precisely the cohomology of the Lie algebra over with coefficients in the adjoint representation of its Poisson module structure.
Poisson algebra, Poisson form, Lie-Rinehart algebra, differential algebra, modules of differential.
Received: October 27, 2023; Accepted: December 22, 2023; Published: February 5, 2024
How to cite this article: S. C. Gatse, A. M. Mavambou and O. M. Mikanou, Lie-Rinehart algebras on Kaehler differential and Poisson algebras cohomology, JP Journal of Algebra, Number Theory and Applications 63(2) (2024), 111-129. http://dx.doi.org/10.17654/0972555524007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. C. Gatsé, Some applications of Lie-Rinehart algebras, Palestinian Journal of Mathematics (to appear).[2] S. C. Gatsé and C. C. Likouka, A Poisson algebra structure over the exterior algebra of a quadratic space, Advances in Mathematics: Scientific Journal 12(1) (2023), 175-186.[3] E. Okassa, Algèbres de Jacobi et algèbres de Lie-Rinehart-Jacobi, J. Pure Appl. Algebra 208 (2007), 1071-1089.[4] K. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, Vol. 213, Cambridge University Press, Cambridge, 2005.[5] J. Huebschmann, Lie-Rinehart algebras, descent, and quantization, fields, Inst. Commun. 3(43) (2004), 295-316.[6] J. Huebschmann, Poisson cohomology and quantization, J. Reine Angrew. Math. 408 (1999), 57-113.[7] I. Vaisman, Lectures on the geometry of Poisson manifolds, Progr. Math., Vol. 118, Birkhauser, Basel, 1994.[8] J.-L. Loday, Cyclic Homology, Springer, New York, Berlin, 1992.[9] K. H. Bhaskara and K. Viswanath, Poisson algebras and Poisson manifolds, Pitman Res. Notes in Math., Vol. 174, Longman, New York, 1988.[10] E. Kunz, Kaehler differentials, Vieweg Advanced Lectures in Mathematics, Braunschweig/Wiesbaden, Friedrich Vieweg and Sohn, 1986.[11] J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque (hors série), Soc. Math. de France (1985), 257-271.[12] N. Bourbaki, Algèbre Chapitres 1 à 3, Hermann, Paris, 1970.[13] G. Rinehart, Differential forms for general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222.[14] R. S. Palais, The cohomology of Lie rings, Amer. Math. Soc., Providence, R.I., Proc. Sympos. Pure Math., Vol. 3, 1961, pp. 130-137.[15] J.-C. Herz, Pseudo-algèbres de Lie, C. R. Acad. Sci. Paris 236 (1953), 1935-1937.