FINSLER METRICS WITH BUSEMANN CURVATURE BOUNDS
We prove that a Finsler metric has Busemann curvature bounded above (below, respectively) by κ if and only if it is the Berwald metric with flag curvature bounded above (below, respectively) by κ. Combining this with Szabó’s Berwald metrization theorem, we can obtain that such a Finsler metric is affinely equivalent to a Riemannian metric with sectional curvature bounded above (below, respectively) by κ.
Finsler metric, Busemann curvature, Berwald metric.
Received: July 13, 2023; Revised: August 25, 2023; Accepted: September 1, 2023; Published: October 12, 2023
How to cite this article: Chang-Wan Kim, Finsler metrics with Busemann curvature bounds, Far East Journal of Applied Mathematics 116(3) (2023), 249-262. http://dx.doi.org/10.17654/0972096023014
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:[1] D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics 200, Springer-Verlag, 2000.[2] N. Boonnam, R. Hama and S. V. Sabau, Berwald spaces of bounded curvature are Riemannian, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 33 (2018), 339-347.[3] Y. Burago, M. Gromov and G. Perelman, A. D. Alexandrov spaces with curvature bounded below, Russ. Math. Surv. 47 (1992), 3-51.[4] H. Busemann, Spaces with non-positive curvature, Acta Math. 80 (1948), 259-310.[5] S.-S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific, 2005.[6] S. Ivanov and A. Lytchak, Rigidity of Busemann convex Finsler metrics, Comment. Math. Helv. 94 (2019), 855-868.[7] E. Kann, Bonnet’s theorem in two-dimensional G-spaces, Comm. Pure Appl. Math. 14 (1961), 765-784.[8] M. Kell, Sectional curvature-type conditions on metric spaces, J. Geom. Anal. 29 (2019), 616-655.[9] P. Kelly and E. Straus, Curvature in Hilbert geometries, Pacific J. Math. 8 (1958), 119-125.[10] V. S. Matveev and M. Troyanov, The Binet-Legendre metric in Finsler geometry, Geom. Topol. 16 (2012), 2135-2170.[11] Z. I. Szabó, Positive definite Berwald spaces, Tensor (N.S.) 35 (1981), 25-39.[12] Z. I. Szabó, Berwald metrics constructed by Chevalley’s polynomials, 2006. Preprint, Available at: arXiv:math/0601522.