TOPOLOGICALLY NOETHERIAN BANACH ALGEBRAS
A Banach algebra is said to be topologically left Noetherian (TLN) if for any increasing chain of closed left ideals there exists an such that for all We study some basic properties of this class of Banach algebras. In particular, we show that if has an essential socle, then it is of finite dimension.
Banach algebra, topologically Noetherian, chain conditions.
Received: May 15, 2023; Accepted: July 5, 2023; Published: July 25, 2023
How to cite this article: M. Mabrouk and E. Saeed, Topologically Noetherian Banach algebras, JP Journal of Algebra, Number Theory and Applications 62(1) (2023), 1-11. http://dx.doi.org/10.17654/0972555523018
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Al-Moajil, The compactum and finite dimensionality in Banach algebras, Int. J. Math. Math. Sci. 5 (1982), 275-280.[2] A. Al-Ahmari, F. Aldosray and M. Mabrouk, Banach algebras satisfying certain chain conditions on closed ideals, Stud. Sci. Math. Hung. 57(3) (2020), 290-297.[3] B. Aupetit, Propriétés spectrales des algèbres de Banach, Springer-Verlag, Berlin New York, Vol. 735, 1979.[4] B. Aupetit, Inessential elements in Banach algebras, Bull. Lond. Math. Soc. 18(5) (1986), 493-497.[5] B. Aupetit, A Primer on Spectral Theory, Universitext, Springer-Verlag, 1991.[6] F. F. Bonsall and J. Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, Springer Berlin Heidelberg, 2012.[7] C.-Y. Chou, Notes on the separability of C*-algebras, Taiwan. J. Math. 16(2) (2012), 555-559.[8] S. Giotopoulos and M. Roumeliotis, Algebraic ideals of semiprime Banach algebras, Glasg. Math. J. 33(3) (1991), 359-363.[9] S. Grabiner, Finitely generated, Noetherian, and Artinian Banach modules, Indiana Univ. Math. J. 26(3) (1977), 413-425.[10] R. Grigorchuk, M. Musat and M. Rordam, Just-infinite C*-algebras, Comment. Math. Helv. 93(1) (2018), 157-201.[11] R. Prosser, On the Ideal Structure of Operator Algebras, Mem. Amer. Math. Soc., Vol. 45, 1963.[12] C. Rachid, A concept of finiteness in topological algebras, Contemp. Math. 427 (2007), 131-137.[13] C. E. Rickart, General theory of Banach algebras, University Series in Higher Mathematics, Van Nostrand, 1960.[14] W. Rudin, The closed ideals in an algebra of analytic functions, Canad. J. Math. 9 (1957), 426-434.[15] M. Sinclair and W. Tullo, Noetherian Banach algebras are finite dimensional, Math. Ann. 211(2) (1974), 151-153.[16] Sin-Ei Takahasi, Finite dimensionality in socle of Banach algebras, Int. J. Math. Math. Sci. 7(3) (1984), 519-522.[17] A. W. Tullo, Algebraic conditions on Banach algebras, Ph. D. Thesis, University of Stirling (United Kingdom), 1974.[18] J. T. White, Left ideals of Banach algebras and dual Banach algebras, Banach Algebras and Applications: Proceedings of the International Conference held at the University of Oulu, July 3-11, 2017, Mahmoud Filali, ed., De Gruyter, Berlin, Boston, 2020, pp. 227-254.