ON SMALL SUBTRACTIVE AND PROJECTIVE SEMIMODULES OVER ZERO-SUM SEMIRING
Many notions in modules theory have different generalizations in the theory of semimodules.
In the first part to this paper, we study coclosed and subtractive subsemimodules and obtain some proprieties of T-semimodules.
In the second part, we introduce the notion of small M-a-projective semimodules and characterize them in the category of subtractive semimodules over zero-sum semirings.
subtractive semimodule, zero-sum semiring, coclosed subsemimodule, amply supplemented, T-semimodule, relative projectivity, small M-a-projectivity.
Received: September 7, 2022; Revised: December 24, 2022; Accepted: March 10, 2023; Published: May 25, 2023
How to cite this article: Moussa Sall, Mamadou Barry and Landing Fall, On small subtractive and projective semimodules over zero-sum semiring, JP Journal of Algebra, Number Theory and Applications 61(2) (2023), 117-134. http://dx.doi.org/10.17654/0972555523014
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] J. Y. Abuhlail, Semicorings and semicomodules, Comm. Algebra 42 (2014), 4801-4838.[2] J. Y. Abuhlail, S. N. Ilin, Y. Katsov and T. G. Nam, On V-semirings and semirings all of whose cyclic semi-modules are injective, Comm. Algebra 43 (2015), 4632-4654.[3] J. Abuhlail, Semirings and semicomodules, 2008.http://faculty.kfupm.edu.sa/math/abuhlail/Projects/FT060010-FinalReport.pdf.[4] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1975.[5] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Frontiers in Mathematics, Birkhäuser Basel, 2006.[6] J. S. Golan, The Theory of Semirings with Applications to Mathematics and Theoretical Computer Science, Kluwer Academic Publishers, 1999.[7] D. Keskin, On coclosed submodules, Indian J. Pure Appl. Math. 36 (2005), 135-144.[8] Huda Mohammed J. Al-Thani, Projective semimodules, African Journal of Mathematics and Computer Science Research 4(9) (2011), 294-299.[9] Samuel Bourne and Hans Zassenhauss, On a Wedderburn-Artin structure theory of a potent semiring, Lehigh University, Bethlehem, Pennsylvania and McGill University, Canada, 1956, pp. 613-615.[10] M. Takahashi, On the bordism categories. II. Elementary properties of semimodules, Math. Sem. Notes Kobe Univ. 9(2) (1981), 495-530.[11] M. Takahashi, On the bordism categories. III. Functors Hom and for semimodules, Math. Sem. Notes Kobe Univ. 10(1) (1982), 211-236.[12] M. Takahashi, Extensions of semimodules. I, Math. Sem. Notes Kobe Univ. 10(2) (1982), 563-592.[13] M. Takahashi, Completeness and C-cocompleteness of the category of semimodules, Math. Sem. Notes Kobe Univ. 10(2) (1982), 551-562.[14] M. Takahashi, Extensions of semimodules. II, Math. Sem. Notes Kobe Univ. 11(1) (1983), 83-118.[15] M. Takahashi and H. X. Wang, On epimorphisms of semimodules, Kobe J. Math. 6(2) (1989), 297-298.[16] M. Takahashi, On semimodules I, Kobe J. Math. 1 (1984), 67-97.[17] M. Takahashi, On semimodules II, Kobe J. Math. 1 (1984), 177-190.[18] M. Takahashi, On semimodules III, Kobe J. Math. 2 (1985), 131-141.[19] M. Takahashi, Structures of semimodules, Kobe J. Math. 4 (1987), 79-101.[20] Nguen Xuan Tuan and Ho Xuan Thang, On superfluous subsemimodules, Georgian Math. J. 10(4) (2003), 763-770.[21] N. X. Tuyen and Tran Giang Nam, On projective covers of semimodules in the category -CSSMod and their applications, Department of Mathematics, Hue University, Vietnam, 2007, pp. 131-140.[22] R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach, Reading, 1991.