ANALYSIS OF BENEFITS OF INTEGRATING THE OPPOSITION BASED LEARNING TECHNIQUE INTO NON-DOMINATED SORTING GENETIC ALGORITHM III
Deterministic and heuristic approaches have shown significant contributions in solving the mono-objective optimization problems. In the case of multi-objective optimization problems, metaheuristic approaches have achieved great success in providing quality Pareto-optimal solutions, rather than deterministic and heuristic approaches. Basically, quality of Pareto-optimal solutions depends upon convergence and diversity maintained by optimization algorithm, where convergence and diversity refer to the search capabilities of optimization algorithm towards and along Pareto-optimal front, respectively. In this line, the non-dominated sorting genetic algorithm III (NSGA III), a population-based metaheuristic method, has become a widely accepted multi-objective optimization algorithm. However, random generation of initial population might generate the undiversified initial population and that may lead to premature convergence giving the local Pareto-optimal solutions rather than global Pareto-optimal solutions. To alleviate, this paper integrates the opposition-based learning (OBL) method in NSGA III for population initialization and generation jumping. The usefulness of OBL integrated NSGA III is demonstrated through solving a numerical example of construction project. Based on several performance metrics, the results of numerical example indicate that the OBL integrated NSGA III outperforms the NSGA III and other existing algorithms in a significant manner.
multi-objective optimization, NSGA III, Pareto-optimal solutions, performance metrics, opposition-based learning, convergence, diversity.
Received: October 20, 2022; Revised: November 23, 2022; Accepted: December 28, 2022; Published: January 12, 2023
How to cite this article: Shilpi Jain and Kamlesh Kumar Dubey, Analysis of benefits of integrating the opposition based learning technique into non-dominated sorting genetic algorithm III, Advances and Applications in Discrete Mathematics 36 (2023), 93-119. http://dx.doi.org/10.17654/0974165823007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] N. Gunantara, A review of multi-objective optimization: methods and its applications, Cogent Eng. 5(1) (2018), 1-16.doi:10.1080/23311916.2018.1502242.[2] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, 1975.[3] N. Srinivas and K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput. 2 (1994), 221-248.doi:10.1162/evco.1994.2.3.221.[4] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002), 182-197. doi:10.1109/4235.996017.[5] K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints, IEEE Trans. Evol. Comput. 18 (2014), 577-601. doi:10.1109/TEVC.2013.2281535.[6] K. Sharma and M. K. Trivedi, Latin hypercube sampling-based NSGA-III optimization model for multimode resource constrained time-cost-quality-safety trade-off in construction projects, Int. J. Constr. Manag. 22 (2022), 3158-3168. doi:10.1080/15623599.2020.1843769.[7] H. R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, Proceedings - International Conference on Computational Intelligence for Modelling, Control and Automation, CIMCA 2005 and International Conference on Intelligent Agents, Web Technologies and Internet, 2005. doi:10.1109/cimca.2005.1631345. [8] M. Y. Cheng and D. H. Tran, Opposition-based multiple-objective differential evolution to solve the time-cost-environment impact trade-off problem in construction projects, J. Comput. Civ. Eng. 29 (2015).doi:10.1061/(ASCE)CP.1943-5487.0000386.[9] I. Das and J. E. Dennis, Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim. 8 (1998). doi:10.1137/S1052623496307510.[10] R. Storn and K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim. 11 (1997), 341-359. doi:10.1023/A:1008202821328.[11] K. Deb and R. B. Agrawal, Simulated binary crossover for continuous search space, Complex Syst. 9 (1995), 115-148. doi:10.1.1.26.8485Cached.[12] S. Rahnamayan, H. R. Tizhoosh and M. M. Salama, Opposition-based differential evolution, Stud. Comput. Intell.143 (2008), 155-171.doi:10.1007/978-3-540-68830-3_6.[13] A. Panwar and K. N. Jha, A many-objective optimization model for construction scheduling, Constr. Manag. Econ. 37 (2019), 727-739.doi:10.1080/01446193.2019.1590615.[14] F. Habibi, F. Barzinpour and S. J. Sadjadi, Resource-constrained project scheduling problem: review of past and recent developments, J. Proj. Manag. 3 (2018), 55-88. doi:10.5267/j.jpm.2018.1.005.[15] S. Tiwari and S. Johari, Project scheduling by integration of time cost trade-off and constrained resource scheduling, J. Inst. Eng. Ser. A 96 (2015), 37-46. doi:10.1007/s40030-014-0099-2.[16] K. Feng, W. Lu, S. Chen and Y. Wang, An integrated environment-cost-time optimisation method for construction contractors considering global warming, Sustain. 10(11) (2018), 1-22. doi:10.3390/su10114207.[17] D. L. Luong, D. H. Tran and P. T. Nguyen, Optimizing multi-mode time-cost-quality trade-off of construction project using opposition multiple objective difference evolution. Int. J. Constr. Manag. 21 (2021), 271-283.doi:10.1080/15623599.2018.1526630.[18] K. El-Rayes and A. Kandil, Time-cost-quality trade-off analysis for highway construction, J. Constr. Eng. Manag. 131(4) (2005).doi: 10.1061/(ASCE)0733-9364(2005)131:4(477).[19] A. Afshar and H. R. Z. Dolabi, Multi-objective optimization of time-cost-safety using genetic algorithm, Int. J. Optim. Civ. Eng. 4 (2014), 433-450.[20] E. Elbeltagi, M. Ammar, H. Sanad and M. Kassab, Overall multiobjective optimization of construction projects scheduling using particle swarm, Eng. Constr. Archit. Manag. 23 (2016), 265-282. doi: 10.1108/ECAM-11-2014-0135.[21] G. Singh, A. T. Ernst, Resource constraint scheduling with a fractional shared resource, Oper. Res. Lett. 39(5) (2011), 363-368. doi:10.1016/j.orl.2011.06.003[22] K. Khalili-Damghani, M. Tavana, A. R. Abtahi and F. J. Santos Arteaga, Solving multi-mode time-cost-quality trade-off problems under generalized precedence relations, Optim. Methods Softw. 30 (2015), 965-1001.doi:10.1080/10556788.2015.1005838.[23] K. Deb and M. Goyal, A combined genetic adaptive search (GeneAS) for engineering design, Comput. Sci. Informatics 26 (1996), 30-45. doi: citeulike-article-id:9625478.[24] J. C. Ferreira, C. M. Fonseca and A. Gaspar-Cunha, Methodology to select solutions from the Pareto-optimal set: a comparative study, Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference, 2007. doi:10.1145/1276958.1277117.[25] S. E. Elmaghraby, Activity Networks: Project Planning and Control by Network Models, John Wiley & Sons, New York, 1977.