SOME PARAMETERS OF COMMUTING GRAPH OF A MULTIGROUP
We discuss the notions of a multiset (mset) and a multigroup (mgroup) in relation with a classical group. The commuting graph is introduced and used to represent a multigroup. It is shown that the multiplicity of the identity element is the maximum in a multigroup. The maximum degree of vertex in any commuting graph has been found and it is shown that the commuting graph of a multigroup is a complete multipartite graph.
multiset (mset), multigroup (mgroup), commuting graph.
Received: September 3, 2022; Accepted: December 29, 2022; Published: March 20, 2023
How to cite this article: S. M. Magami and S. U. Ashafa, Some parameters of commuting graph of a multigroup, Far East Journal of Applied Mathematics 116(1) (2023), 61-71. http://dx.doi.org/10.17654/0972096023005
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] K. Ajay, S. Lavanya, J. C. Peter and T. C. Tamizh, Recent developments on the power graph of finite groups - a survey, AKCE International Journal of Graphs and Combinatorics 18 (2021), 1-30. doi: 10.1080/09728600.2021.1953359.[2] J. A. Awolola and P. A. Ejegwa, On some algebraic properties of order of an element of a multigroup, Quasi. Related Systems 25 (2017), 21-26.[3] J. A. Awolola and A. M. Ibrahim, Some results on multigroups, Quasi. Related Systems 24 (2016), 169-177.[4] M. Dresher and O. Ore, Theory of multigroups, Amer. J. Math. 60 (1938), 705 733.[5] J. G. Gambo and Y. Tella, On multiset functions, International Journal of Scientific and Engineering Research 13(6) (2022).[6] A. M. Ibrahim and P. A. Ejegwa, A survey on the concept of multigroup theory, J. Nigerian Asso. Math. Physics 38 (2016), 1-8.[7] C. M. P. Julio and N. N. Irene, Commuting graph of a group on a transversal, arXiv:1807.01821v1 [math.GR] 5 July 2018.[8] D. E. Knuth, The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms), 2nd ed., Addison-Wesley, 1981.[9] L. Mao, Topological multigroups and multifields, Int. J. Math. Combin. 1 (2009), 8-17.[10] S. Nazmul, P. Majumdar and S. K. Samanta, On multisets and multigroups, Ann. Fuzzy Math. Inform. 63 (2013), 643-656.[11] J. C. Peter, R. P. Raveendra and T. C. Tamizh, Subgroup sum graphs of finite abelian groups, arXiv:2111.05748v1 [math.CO] 10 Nov. 2021.[12] D. Shyamal and R. Debjani, On multiset group, Proyecciones 37(3) (2018), 481-491.[13] M. I. Sowaity, B. Sharada and A. M. Naji, The identity graph of a multigroup, Far East Journal of Mathematical Sciences (FJMS) 117(1) (2019), 67-86.[14] J. Vahidi and A. T. Asghar, The commuting graphs on groups and Journal of Mathematics and Computer Science 1(2) (2010), 123-127.