GENERALIZED HARARY INDEX OF CERTAIN CLASSES OF GRAPHS
A new generalized variant of the much acclaimed distance based topological index was introduced by Xu et al. and named as the generalized Harary index defined as
where the summation goes over all unordered pairs of vertices in a simple and undirected graph G = (V, E) and k is a fixed arbitrary non-negative real number [28]. In this article, we computed the generalized Harary indices of some special classes of graphs such as Mycielski’s graphs, zero-divisor graphs and some specific families of tree-like linear alkanes, Gutman, bistar, banana and Kragujevac trees.
topological index, Harary index, Mycielskian graph.
Received: December 30, 2021; Accepted: September 20, 2022; Published: December 22, 2022
How to cite this article: Basavaraju Chaluvaraju, Hosahalli Siddagangaiah Boregowda and Ismail Naci Cangul, Generalized Harary index of certain classes of graphs, Far East Journal of Applied Mathematics 116(1) (2023), 1-33. http://dx.doi.org/10.17654/0972096023001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. Akbari and A. Mohammadian, On the zero divisor graph of a commutative rings, J. Algebra 274 (2004), 847-855.[2] A. Behtoei and M. Anbarloei, Degree distance index of the Mycielskian and its complement, Iranian Journal of Mathematical Chemistry 7(1) (2016), 1-9.[3] D. F. Anderson and P. S. Livingston, The zero divisor graph of commutative ring, J. Algebra 217(2) (1999), 434-447.[4] A. T. Balaban, The Harary index of a graph, MATCH Commun. Math. Comput. Chem. 75 (2016), 243-245.[5] I. Beck, Coloring of commutative rings, J. Algebra 116(1) (1988), 208-226.[6] A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees, theory and applications, Acta Appl. Math. 66 (2001), 211-249.[7] K. C. Das, B. Zhou and N. Trinajstic, Bounds on Harary index, J. Math. Chem. 46 (2009), 1369-1376.[8] K. C. Das, K. Xu, I. N. Cangul, A. S. Cevik and A. Graovac, On the Harary index of graph operations, J. Inequal. Appl. 339 (2013), 1-16.[9] S. El-Basil, Applications of caterpillar trees in chemistry and physics, J. Math. Chem. 1(2) (1987), 153-173.[10] I. Gutman, Distance in theory of graphs, Publ. Inst. Math. (Belgr.) 63 (1998), 31-36.[11] I. Gutman, V. R. Kulli, B. Chaluvaraju and H. S. Boregowda, On Banhatti and Zagreb indices, J. Int. Math. Virtual Inst. 7 (2017), 53-67.[12] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.[13] S. A. Hosseini, M. B. Ahmadi and I. Gutman, Kragujevac trees with minimal atom-bond connectivity index, MATCH Comm. Math. Comput. Chem. 71 (2014), 5-20.[14] O. Ivanciuc, T. S. Balaban and A. T. Balaban, Design of topological indices. Part 4: Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993), 309-318.[15] A. Ilic, G. Yu and L. Feng, The Harary index of trees, Util. Math. 87 (2012), 21-32.[16] B. Lucic, A. Milicevic, S. Nikolic and N. Trinajstic, Harary index-twelve years later, Croat. Chem. Acta 75 (2002), 847-868.[17] M. Eliasi, G. Raeisi and B. Taeri, Wiener index of some graph operations, Discrete Appl. Math. 160 (2012), 1333-1344.[18] M. R. Ahmadi and R. Jahani-Nezhad, Energy and Wiener index of zero divisor graphs, Iranian Journal of Mathematical Chemistry 2(1) (2011), 45-51.[19] K. Pattabiraman, Degree and distance based topological indices of graphs, Elec. Notes in Disc. Math. 63 (2017), 145-159.[20] D. Plavsic, S. Nikolic, N. Trinajstic and Z. Mihalic, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993), 235-250.[21] B. S. Reddy, R. S. Jain and N. Laxmikanth, Eigenvalues and Wiener index of the zero divisor graph (2017), e-print arXiv:1707.05083.[22] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.[23] N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, 1992.[24] D. B. West, Introduction to Graph Theory, Pearson Education, 2001.[25] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947), 17-20.[26] K. Xu, Trees with the seven smallest and eight greatest Harary indices, Discrete Appl. Math. 160 (2012), 321-331.[27] K. Xu, M. Liu, K. C. Das, I. Gutman and B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Comm. Math. Comput. Chem. 71 (2014), 461-508.[28] K. Xu, K. C. Das and N. Trinajstic, The Harary Index of a Graph, Springer, Heidelberg, 2015.[29] B. Zhou, X. Cai and N. Trinajstic, On the Harary index, J. Math. Chem. 44 (2008), 611-618.