NUMERICAL RESOLUTION OF THE DAM BREAK PROBLEM AND THE POLLUTANT TRANSPORT-DIFFUSION PROBLEM BY THE MOVING GRIDS METHOD UNDER THE FINITE VOLUME METHOD
In this article, we use the finite volume adaptive moving mesh method to solve the dam breaking problem and also the pollutant transport-diffusion problem. The choice of these problems is motivated by their nature, that is to say, problems of Riemann which are characterized by the fact that they are hyperbolic conservation laws with discontinuous solutions. The numerical solution of these types of problems by a numerical method using discretization of the domain such as the finite volume method is challenging. The main problem is to be able to approach these solutions appropriately in areas where they are discontinued. This task requires a very fine discretization step, leading to the use of a very high number of nodes for the solution. This is a major obstacle to the effectiveness of the method used. The technique of adaptive mesh method grid then intervenes to remedy this situation. The purpose of this article is to test the efficiency of the technique of adaptive mesh grid under the finite volume method.
simulation in shallow water of the free surface flow, Riemann problem, finite volume method, moving grids method.
Received: August 2, 2021; Revised: June 10, 2022; Accepted: July 16, 2022; Published: September 12, 2022
How to cite this article: Diakalia Koné, Kassiénou Lamien, Abdoulaye Samaké and Longin Somé, Numerical resolution of the dam break problem and the pollutant transport-diffusion problem by the moving grids method under the finite volume method, Far East Journal of Applied Mathematics 115 (2022), 1-24. http://dx.doi.org/10.17654/0972096022016
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Edwige Godlewski and Pierre-Arnaud Raviart, Hyperbolic System of Conservation Laws, Ellipses, 1991.[2] R. Eymard, T. Gallouet, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math. 92(1) (2002), 41-82.[3] M. Ohlberger, Adaptive finite volume methods for displacement problems in porous media, Comput. Vis. Sci. 5(2) (2002), 95-106.[4] Yu-E Shi, Résolution numérique des équations de Saint-Venant par la technique de projection en utilisant une méthode des volumes finis dans un maillage non structuré Sciences de la Terre, Université de Caen, 2006.[5] Carole Delenne, Propagation de la sensibilité dans les modéles hydrodynamiques, 2015, pp. 22-65.[6] Jean-François Remacle and Gregoire Winckelmans, Equations aux dérivées partielles, 2007.[7] E. Audusse, Thése en Modélisation hyperbolique et analyse numérique pour les écoulements en eaux peu profondes, 2004.http://tel.archives-ouvertes.fr/docs/00/04/75/79/PDF/tel-00008047.pdf [8] E. Audusse, F. Bouchut, M. O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput. 25(6) (2004), 2050-2065.[9] K. Korichi, A. Hazzab and A. Ghenaim, Schéma à capture de choc pour la simulation numérique des écoulements à surface libre, 2010.[10] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Birkhauser, Basel, 2004.[11] Huazhong Tang, Solution of the shallow-water equations using an adaptive moving mesh method, Internat. J. Numer. Methods Fluids 44 (2004), 789-810.[12] Olivier Delestre, Thése, Simulation du ruissellement d’eau de pluie sur des surfaces agricoles, 2010.http://tel.archives-ouvertes.fr/docs/00/56/16/76/PDF/olivier.delestre1878.pdf [13] L. Amara, B. Achour and A. Berreksi, Approche numerique aux volumes finis pour le calcul de la reponse dynamique des cheminees d’equilibre, Larhys Journal 14 (2013), 7-19.[14] Randall J. Leveque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.[15] K. Lamien, L. Some and M. Ouedrago, Using the adaptive mesh finite volume method to solve three test problems, Far East Journal of Applied Mathematics 95(4) (2016), 283-310.[16] Christophe Ancey, Laboratoire hydraulique environnementale(LHE), École Polytechnique Fédérale de Lausanne, Complément de cours Hydraulique à surface libre Master GCOutils mathématiques, version 5.1 du 2 février 2013.[17] P.-Y. Lagree, Résolution numérique des équations de Saint-Venant, mise en œuvre envolumes finis bien balancés, 2013.[18] P. Cargo and G. Gallice, Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws, Journal of Computational Physics 136 (1997), 446-466.[19] W. Dai and P. R. Woodward, A simple Riemann solver and high-order Godunov schemes for hyperbolic systems of conservation laws, Journal of Computational Physics 121(1) (1995), 51-65.[20] A. Guardone and L. Vigevano, Roe linearization for the van der Waals gas, Journal of Computational Physics 175 (2002), 50-78.[21] S. Godunov, A. Zabrodine, M. Ivanov, A. Kraiko and G. Prokopov, Résolution numérique des problémes multidimensionnels de la dynamique des gaz, Editions MIR, Moscou, 1979.[22] C. Berthon, F. Coquel, J. M. Herard and M. Uhlmann, An approximate solution of the Riemann problem for a realisable second-moment turbulent closure, Shock Waves 11 (2002), 245-269.[23] Marine Simoes, Modélisation eulérienne de la phase dispersée dans les moteurs à propergol solide, avec prise en compte de la pression particulaire, 2006.[24] Emmanuel Audusse and Marie-Odile Bristeau, Transport of pollutant in shallow water, a two time steps kinetic method, M2AN 37(2) (2005), 389-416.[25] Vladimir D. Liseikin, Grid Generation Methods, Third Edition, Springer, 2017.[26] Huazhong Tang and Tao Tang, Adaptive methods for one and two dimensional hyperbolic conservation laws, SIAM J. Numer. Anal. 41(2) (2008), 487-515.[27] John M. Stockie, John A. Mackenzie and Robert Russell, A moving mesh method for one dimensional hyperbolic conservation laws, SIAM J. Sci. Comput. 22(5) (2001), 1791-1813.[28] Weizhang Huang and Robert D. Rusell, Adaptive moving mesh method, Applied Mathematical Sciences, Springer, 2011.[29] K. Gayaz, M. Denys and S. Mina, Numerical Simulation of Conservation Laws With Moving Grid Nodes, 23 May 2020. arXiv:1511.02771v[math.NA].[30] A. Berbudez and M. E. Vasquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids 23 (1994), 1049-1071.