AN EMPIRICAL STUDY OF THE ASYMPTOTIC LAWS OF SOME ESTIMATORS OF GENERALIZED ASSOCIATION PARAMETER AND SIGNED SYMMETRIC COVARIATION COEFFICIENT
We investigate the asymptotic laws of some estimators of the generalized association parameter and the signed symmetric covariation coefficient in an empirical study. Estimators of the generalized association parameter (g.a.p) are based on two ways of estimating the spectral measure: the empirical characteristic function and one-dimensional projections of the data. The estimator of the signed symmetric covariation coefficient (scov) is based on fractional lower-order moments (FLOM). In the case of sub-Gaussian symmetric alpha-stable random vectors, the correlation coefficient between components of the Gaussian underlying vector coincides with the generalized association parameter and, when it exists, the signed symmetric covariation coefficient. The estimator of this quantity is based on fractional lower order moments.
symmetric alpha-stable random vector, covariation, association, correlation, spectral measure.
Received: December 16, 2021; Accepted: January 22, 2022; Published: February 4, 2022
How to cite this article: Bernédy Nel Messie Kodia Banzouzi, Claude Mederic Ndimba, Lavie Phanie Moulogho Issayaba and Davy Cardorel Nzaba Kaya, An empirical study of the asymptotic laws of some estimators of generalized association parameter and signed symmetric covariation coefficient, Far East Journal of Theoretical Statistics 64 (2022), 1-44. DOI: 10.17654/0972086322001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. J. Adler, R. E. Feldman and C. Gallaher, Analysing stable time series, A Practical Guide to Heavy Tails: Statistical Techniques and Applications, R. J. Adler, R. E. Feldman and M. S. Taqqu, eds., Birkhäuser Boston, 1998, pp. 133-158.[2] K. Burnecki, A. Misiorek and R. Weron, Loss distributions, University Library of Munich, Germany, MPRA Paper, 2010.[3] S. Cambanis and G. Miller, Linear problems in pth order and stable processes, SIAM J. Appl. Math. 41(2) (1981), 43-69.[4] Y. Davydov and V. G. Paulauskas, On the estimation of the parameters of multivariate stable distributions, Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications 58(2) (1999), 107-124.[5] L. d’Estampes, Statistical analysis of stable processes: dependence measure and identification of stable AR processes, Truncated Sequential Tests, Ph.D. Thesis, Institut National Polytechnique de Toulouse (in French), 2003.[6] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin, Heidelberg, 1997.[7] B. Garel and J. C. Massé, Calculation of Prokhorov distance by optimal quantization and maximum flow, Adv. Stat. Anal. 93 (2009), 73-88.[8] S. Kring, S. T. Rachev, M. Höchstötter and F. J. Fabozzi, Estimation of -stable sub-Gaussian distributions for asset returns, Risk Assessment, Contributions to Economics, G. Bol, S. T. Rachev and R. Würth, eds., Physica-Verlag HD, 2009, pp. 111-152.[9] B. Kodia and B. Garel, Signed symmetric covariation coefficient and generalized association parameter for alpha-stable dependence modeling, estimation and comparison, Comm. Statist. Theory Methods 43 (2014), 5156-5174.[10] J. H. McCulloch, Simple consistent estimators of stable distribution parameters, Commun. Statist. Simulation Comput. 15 (1986), 1109-1136.[11] J. H. McCulloch, Estimation of the bivariate stable spectral representation by the projection method, Comput. Econ. 16 (2000), 47-62.[12] A. J. McNeil, R. Frey and P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, Princeton University Press, 2005.[13] G. Miller, Properties of certain symmetric stable distributions, J. Multivariate Anal. 8(3) (1978), 346-360.[14] C. L. Nikias and M. Shao, Signal Processing with Alpha-stable Distributions and Applications, John Wiley & Sons, Inc., New York, 1995.[15] J. P. Nolan, Maximum likelihood estimation of stable parameters, Lévy Processes, O. E. Barndorff-Nielsen et al., eds., Birkhäuser Boston, MA, 2001, pp. 379-400.[16] J. P. Nolan, A. K. Panorska and J. H. McCulloch, Estimation of stable spectral measures, Math. Comput. Modelling 34 (2001), 1113-1122.[17] V. J. Paulauskas, Some remarks on multivariate stable distributions, J. Multivariate Anal. 6 (1976), 356-368.[18] S. I. Resnick, Why non-linearities can ruin the heavy-tailed modeler’s day, A Practical Guide to Heavy Tails: Statistical Techniques and Applications, R. J. Adler, R. E. Feldman and M. S. Taqqu, eds., Birkhäuser Boston, 1998, pp. 219-239.[19] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Stochastic Modeling, Chapman & Hall, New York-London, 1994.[20] M. Seidpisheh and A. Mohammadpour, Principle component analysis based on new symmetric similarity measures for heavy-tailed data, Fluct. Noise Lett. 17(4) (2018), 8.[21] V. V. Uchaikin and V. M. Zolotarev, Chance and stability, Stable Distributions and their Applications, de Gruyter, Berlin, New York, 1999.