FÂ AND GEOMETRIC TRANSFORMATIONS
We apply operators used in the generation of matrix forms of Pascal’s triangle to obtain relations between the binary quadrivectors of FÂ. We then cleverly group them together to obtain invariant subsets with respect to geometric transformations.
FÂ system, group T operators, permutation matrices.
Received: November 2, 2021; Accepted: January 3, 2022; Published: January 21, 2022
How to cite this article: EDARH-BOSSOU Toyo Koffi, AKONA Tcha and d’ALMEIDA Zokpé Zoki, FÂ and geometric transformations, JP Journal of Algebra, Number Theory and Applications 53(2) (2022), 123-136. DOI: 10.17654/0972555522007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References
[1] d’ALMEIDA Zokpé Zoki and EDARH-BOSSOU Toyo Koffi, Mathematics of the FÂ: case of algebra and geometry, Universal Journal of Mathematics and Mathematical Sciences 15 (2022), 1-9.[2] Azimavixokonu Zokpe Zoke Axosugedegudu, Les Travaux de Zokpe Zoki, ESSAI; Éditions Publibook, 2015.[3] Babiga Birregah, Transformations géométriques sur les formes matricielles du triangle de Pascal: application aux automates à états finis et réseaux en grille, Thèse de Doctorat - Université de Lomé, 2007.[4] Prosper Kwaku Doh, The forty-eight square matrix forms of the arithmetic triangle, Research Report Doc n° 1/2001-41/DKP, 2001.[5] Prosper Kwaku Doh, Twelve matrix form of the arithmetic triangle: mathematical tools, relation diagram, Research Report Doc n° 1/1996-199/DKP, 1996.[6] Prosper Kwaku Doh, Courbes Paramétriques Polynomiales et Formes Matricielles du Théorème Binomial: Nouveaux Outils Fondamentaux pour la Conception et Fabrication Assistée par Ordinateur, Thèse de Doctorat, Université de Nancy 1, 1988.