A MIXED VOLUME ELEMENT METHOD WITH CHARACTERISTIC FRACTIONAL STEP DIFFERENCES FOR COMPRESSIBLE CONTAMINATION TREATMENT FROM NUCLEAR WASTE
The mathematical model for the compressible contamination treatment from nuclear waste is defined by a nonlinear system of partial differential equations including a parabolic equation for the pressure, several convection-diffusion equations for the concentrations of different factors, a heat conduction equation for the temperature. Considering the physical nature, the features of model and the computational scale, the authors combine a mixed volume element, the characteristics and fractional step differences together for solving this problem. The conservative physical nature is preserved for the pressure, and the Darcy velocity is computed at the same time. Numerical computations are accomplished quite well at sharp fronts without numerical oscillation or dispersion. Meanwhile, a large step and the speedup algorithm are used, and the computational work is decreased greatly. An optimal second order estimate in norm is discussed.
mixed volume element, characteristic fractional step, local conservation, error estimates, numerical experiments.
Received: October 8, 2021; Accepted: October 30, 2021; Published: January 4, 2022
How to cite this article: Changfeng Li, Yirang Yuan and Qing Yang, A mixed volume element method with characteristic fractional step differences for compressible contamination treatment from nuclear waste, Far East Journal of Applied Mathematics 111(2) (2021), 59-96. DOI: 10.17654/0972096021002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Jr. J. Douglas, Finite difference method for two-phase incompressible flow in porous media, SIAM J. Numer. Anal. 20 (1983), 681-696.[2] R. E. Ewing, Y. R. Yuan and G. Li, Finite element methods for contamination by nuclear waste-disposal in porous media, Numerical Analysis, 1987, D. F. Griffiths and G. A. Watson, eds., Pitman Research Notes in Math. 170, Longman Scientific and Technical, Essex, U. K., 1988, pp. 53-66.[3] C. F. Li, Y. R. Yuan, T. J. Sun and Q. Yang, Mixed volume element-characteristic fractional step difference method for contamination from nuclear waste disposal, J. Sci. Comput. 72 (2017), 467-499. [4] C. F. Li, Y. R. Yuan and H. L. Song, An upwind mixed volume element-fractional step method on a changing mesh for compressible contamination treatment from nuclear waste, Adv. Appl. Math. Mech. 10 (2018), 1384-1417. [5] C. F. Li, Y. R. Yuan and H. L. Song, A mixed volume element with upwind multistep mixed volume element and convergence analysis for numerical simulation of nuclear waste contaminant disposal, J. Comput. Appl. Math. 356 (2019), 164-181. [6] M. Reeves and R. M. Cranwall, User’s manual for the sanda waste-isolation flow and transport model (swift), release 4, 81, Sandia Report Nareg/CR-2324, SAND 81-2516, GF, United States, 1981. [7] Y. R. Yuan, Numerical simulation and analysis for a model for compressible flow for nuclear waste disposal contamination in porous media, Acta Math. Appl. Sin. 15 (1992), 70-82. [8] R. E. Ewing, The Mathematics of Reservoir Simulation, SIAM, Philadelphia, 1983. [9] R. E. Ewing, T. F. Russell and M. F. Wheeler, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comput. Methods Appl. Mech. Engrg. 47 (1984), 73-92. [10] Jr. J. Douglas and Y. R. Yuan, Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedure, Numerical Simulation in Oil Recovery, Springer-Berlag, New York, 1986, pp. 119-132. [11] T. F. Russell, Time stepping along characteristics with incomplete interaction for a Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal. 22 (1985), 970-1013. [12] Y. R. Yuan, Theory and Application of Reservoir Numerical Simulation, Science Press, Beijing, 2013. [13] Jr. J. Douglas and J. E. Roberts, Numerical methods for a model for compressible miscible displacement in porous media, Math. Comp. 41 (1983), 441-459. [14] Jr. J. Douglas, R. E. Ewing and M. F. Wheeler, Approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numer. 17 (1983), 17-33. [15] Jr. J. Douglas, R. E. Ewing and M. F. Wheeler, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO Anal. Numer. 17 (1983), 249-265. [16] P. A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, 606, Springer, 1977. [17] T. Arbogast and M. F. Wheeler, A characteristics-mixed finite element methods for advection-dominated transport problems, SIAM J. Numer. Anal. 32 (1995), 404-424.[18] R. E. Ewing, Y. R. Yuan and G. Li, Finite element for chemical-flooding simulation, Proceeding of the 7th International Conference Finite Element Method in Flow Problems, The University of Alabama in Huntsville, Huntsville, UAHDRESS, Alabama, 1989, pp. 1264-1271. [19] Y. R. Yuan, D. P. Yang and L. Q. Qi, Research on algorithms of applied software of the polymer, Qinlin Gang, ed., Proceedings on Chemical Flooding, Petroleum Industry Press, Beijing, 1998. [20] Y. R. Yuan, The modified method of characteristics with finite element operator-splitting procedures for compressible multi-component displacement problem, J. Syst. Sci. Complex. 16 (2003), 30-45. [21] Y. R. Yuan, The characteristic finite element alternating direction method with moving meshes for nonlinear convection-dominated diffusion problems, Numer. Meth. Part. D. E. 22 (2006), 661-679. [22] Y. R. Yuan, The characteristic finite difference fractional steps method for compressible two-phase displacement problem, Sci. Sin. Math. 42 (1999), 48-57. [23] T. J. Sun and Y. R. Yuan, An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method, J. Comput. Appl. Math. 228 (2009), 391-411. [24] T. J. Sun and Y. R. Yuan, Mixed finite method and characteristics-mixed finite element method for a slightly compressible miscible displacement problem in porous media, Math. Comput. Simulat. 107 (2015), 24-45. [25] Z. Cai, On the finite volume element method, Numer. Math. 58 (1991), 713-735. [26] R. H. Li and Z. Y. Chen, Generalized Difference of Differential Equations, Jilin University Press, Changchun, 1994. [27] T. F. Russell, Rigorous block-centered discretization on inregular grids: improved simulation of complex reservoir systems, Project Report, Research Corporation, Tulsa, 1995. [28] A. Weiser and M. F. Wheeler, On convergence of block-centered finite difference for elliptic problems, SIAM J. Numer. Anal. 25 (1988), 351-375. [29] Z. Cai, J. E. Jones, S. F. Mccormilk and T. F. Russell, Control-volume mixed finite element methods, Comput. Geosci. 1 (1997), 289-315. [30] J. E. Jones, A mixed volume method for accurate computation of fluid velocities in porous media, Ph.D. Thesis, University of Colorado, Denver, Co., 1995. [31] S. H. Chou, D. Y. Kawk and P. Vassileviki, Mixed volume methods for elliptic problems on triangular grids, SIAM J. Numer. Anal. 35 (1998), 1850-1861. [32] S. H. Chou and P. Vassileviki, A general mixed covolume framework for constructing conservative schemes for elliptic problems, Math. Comp. 68 (1999), 991-1011. [33] S. H. Chou, D. Y. Kawk and P. Vassileviki, Mixed volume methods on rectangular grids for elliptic problem, SIAM J. Numer. Anal. 37 (2000), 758-771. [34] H. Pan and H. X. Rui, Mixed element method for two-dimensional Darcy-Forchheimer model, J. Sci. Comput. 52 (2012), 563-587. [35] H. X. Rui and H. Pan, A block-centered finite difference method for the Darcy-Forchheimer Model, SIAM J. Numer. Anal. 50 (2012), 2612-2631. [36] C. J. Chen, W. Liu and C. J. Bi, A two-grid characteristic finite volume element method for semilinear advection-dominated diffusion equations, Numer. Meth. Part. D. E. 29 (2013), 1543-1562. [37] C. J. Chen and X. Zhao, A posteriori error estimate for finite volume element method of the parabolic equations, Numer. Meth. Part. D. E. 33 (2017), 259-275. [38] Y. R. Yuan, A. J. Cheng, D. P. Yang, C. F. Li and Q. Yang, Convergence analysis of mixed volume element-characteristic mixed volume element for three-dimensional chemical oil-recovery seepage coupled problem, Acta Math. Sci. Ser. B 38 (2018), 519-545. [39] R. E. Ewing, Y. R. Yuan and G. Li, A time-discretization procedure for a mixed finite element approximation of contamination by incompressible nuclear waste in porous media, Mathematics of Large Scale Computing, Marcel Dekker, INC, New York and Basel, 1988, pp. 127-146. [40] R. E. Ewing, Y. R. Yuan and G. Li, Time stepping along characteristics for a mixed finite element approximation for compressible flow of contamination from nuclear waste in porous media, SIAM J. Numer. Anal. 26 (1989), 1513-1524. [41] P. L. Lions, On the Schwarz alternating method, II, Second Int. Conf. on Domain Decomposition Methods, SIAM, Philadelphia, PA, 1989.[42] G. I. Marchuk, Splitting and alternating direction methods, P. G. Ciarlet and J. L. Lions, eds., Handbook of Numerical Analysis, Elsevier Science Publishers BV, Paris, 1990. [43] Y. R. Yuan, Fractional Step Finite Difference Method for Multi-dimensional Mathematical-physical Problems, Science Press, Beijing, 2015. [44] R. E. Ewing and M. F. Wheeler, Galerkin methods for miscible displacement problems with point sources and sinks-unit mobility ratio case, Proc. Special Year in Numerical Anal., Lecture Notes #20, Univ. Maryland, College Park, 1981. [45] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. [46] Jr. J. Douglas, Simulation of miscible displacement in porous media by a modified method of characteristic procedure, Numerical Analysis, Dundee, 1981, Lecture Notes in Mathematics, 912, Springer-Verlag, Berlin, 1982.