THE NUMBER OF SUBSETS OF THE SET CONTAINING NO TWO CONSECUTIVE EVEN INTEGERS
Integer sequences have been widely studied. Here we consider an integer sequence counting the number of subsets of S of the set [n] = {1, 2, ..., n} containing no two consecutive even integers. The sequence is associated with the Fibonacci sequence and some properties of the sequence are investigated.
integer sequence, Fibonacci numbers, consecutive even integers, generating functions, combinatorial representation.
Received: August 20, 2021; Accepted: October 1, 2021; Published: November 10, 2021
How to cite this article: Kemal Uslu and Barış Arslan, The number of subsets of the set [n] containing no two consecutive even integers, JP Journal of Algebra, Number Theory and Applications 52(2) (2021), 243-254. DOI: 10.17654/NT052020243
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publishing Co. Pte. Ltd., 1997.[2] H. H. Gulec, N. Taskara and K. Uslu, A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients, Appl. Math. Comput. 220 (2013), 482-486.[3] G. S. Kopp, M. Kologlu, S. Miller and Y. Wang, On the number of summands in Zeckendorf decompositions, Fibonacci Quart. 49 (2011), 116-130.[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, Canada, 2001.[5] I. Martinjak and H. Prodinger, Complementary families of the Fibonacci-Lucas relations, 2015. arXiv:1508.04949.[6] N. J. Sloane, The On-Line Encyclopedia of Integer Sequences. http://oeis.org/A279312.[7] N. J. Sloane, The On-Line Encyclopedia of Integer Sequences. http://oeis.org/A279245.[8] R. P. Stanley, Enumerative Combinatorics, Cambridge University Press, 2011, pp. 125-174.[9] N. Taskara, K. Uslu and H. H. Gulec, On the properties of Lucas numbers with binomial coefficients, Appl. Math. Lett. 23(1) (2010), 68-72.[10] K. Uslu, N. Taskara and H. H. Gulec, Combinatorial sums of generalized Fibonacci and Lucas numbers, Ars Combin. 99 (2011), 139-147.[11] K. Uslu, N. Taskara and H. Kose, The generalized k-Fibonacci and k-Lucas numbers, Ars Combin. 99 (2011), 25-32.[12] H. S. Wilf, Generatingfunctionology, AK Peters, Ltd., Philadelphia, 1990.[13] E. Zeckendorf, Representation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liege 41 (1972), 179-182 (in French).