PRIME NUMBERS: AN ALTERNATIVE STUDY USING OVA-ANGULAR ROTATIONS
Ova-angular rotations of a prime number are characterized, constructed using the Dirichlet theorem. The geometric properties arising from this theory are analyzed and some applications are presented, including Goldbach’s conjecture, the existence of infinite primes of the form and the convergence of the sum of the inverses of the Mersenne’s primes. Although the mathematics that is used is quite elementary, we can notice the usefulness of this theory based on geometric properties. In this paper, the study ends by introducing the ova-angular square matrix.
prime number, ova-angular rotation, geometric properties, Dirichlet’s theorem.
Received: April 28, 2021; Accepted: August 24, 2021; Published: September 1, 2021
How to cite this article: Yeisson Alexis Acevedo Agudelo, Prime numbers: an alternative study using ova-angular rotations, JP Journal of Algebra, Number Theory and Applications 52(1) (2021), 127-161. DOI: 10.17654/NT052010127
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Vatwani, Bounded gaps between Gaussian primes, J. Number Theory 171 (2017), 449-473. doi: 10.1016/j.jnt.2016.07.008.[2] M. R. Murty and A. Vatwani, Twin primes and the parity problem, J. Number Theory 180 (2017), 643-659. doi:10.1016/j.jnt.2017.05.011.[3] J. Avigad and R. Morris, The concept of “character” in Dirichlet’s theorem on primes in an arithmetic progression, Arch. Hist. Exact Sci. 68 (2014), 265-326. doi:10.1007/s00407-013-0126-0.[4] S.-C. Chen, Congruences for t-core partition functions, J. Number Theory 133(12) (2013), 4036-4046. doi:10.1016/j.jnt.2013.06.003.[5] T. Tao, Every odd number greater than 1 is the sum of at most five primes, Math. Comp. 83(286) (2014), 997-1038. arXiv:1201.6656v4, doi:10.1090/S0025-5718-2013-02733-0.[6] K. Matomäki, M. Radziwiłł and T. Tao, Correlations of the Von Mangoldt and higher divisor functions I. Long shift ranges, Proc. Lond. Math. Soc. 118 (2018), 284-350. arXiv:1707.01315, doi:10.1112/plms.12181.[7] Z. Tianshu, There are infinitely many sets of N-odd prime numbers and pairs of consecutive odd prime numbers, Advances in Theoretical and Applied Mathematics 8(1) (2013), 17-26.[8] A. Breitzman, Major milestones in twin prime conjecture, Math. Sci. 41 (2016), 3-15.[9] Kenneth H. Rosen, Elementary Number Theory and its Applications, 6th ed., Monmouth University, 2011.[10] Y. Acevedo and L. Cataño, Capitulo especial: Física y su relación de constitución con la matemática, en Campo Magnético, 1st ed., Vol. I, Académica Española, 2017. [11] Y. D. Sergeyev, Numerical Computations with Infinite and Infinitesimal Numbers: Theory and Applications, 1st ed., Vol. I, Springer, 2013. [12] H. Naruse, Elementary proof and application of the generating functions for generalized Hall-Littlewood functions, J. Algebra 516 (2018), 197-209.doi:https://doi.org/10.1016/j.jalgebra.2018.09.010.[13] Stephan Baier and Liangyi Zhao, On primes in quadratic progressions, Int. J. Number Theory 5 (2009), 1017-1035.[14] P. Kuhn, Uber die primteiler eines polynoms, Proceedings of the International Congress of Mathematicians 2 (1954), 35-37.[15] H. Helfgot, Major arcs for Goldbach problem, 2014. arXiv:1305.2897.[16] Y. Acevedo, A complete classification of the Mersenne’s primes and its implications for computing, Revista Politécnica 16(32) (2020), 111-119. doi:https://doi.org/10.33571/rpolitec.v16n32a10.[17] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım, Bull. Amer. Math. Soc. (N.S.) 44 (2007), 1-18. http://www.ams.org/journals/bull/2007-44-01/S0273-0979-06-01142-6/S0273-0979-06-01142-6.pdf.[18] D. A. Goldston, S. W. Graham, A. Panidapu, J. Pintz, J. Schettler and C. Y. Yildirim, Small gaps between almost primes, the parity problem, and some conjectures of Erdős on consecutive integers II, J. Number Theory 221 (2021), 222-231. doi:https://doi.org/10.1016/j.jnt.2020.06.002.