THE EULER TOTIENT FUNCTION ON QUADRATIC FIELDS
We extend the Euler totient function to the rings of algebraic integers of quadratic extensions of the rational numbers, which are unique factorization domains.
Euler function, quadratic field.
Received: May 4, 2021; Accepted: June 24, 2021; Published: August 21, 2021
How to cite this article: Javier Diaz-Vargas, Carlos Jacob Rubio-Barrios and Horacio Tapia-Recillas, The Euler Totient function on quadratic fields, JP Journal of Algebra, Number Theory and Applications 52(1) (2021), 17-94. DOI: 10.17654/NT052010017
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] L. E. Dickson, A generalization of Fermat’s theorem, Ann. Math. (2) 1(1/4) (1899-1900), 31-36.[2] C. Y. Chao, Generalizations of theorems of Wilson, Fermat and Euler, J. Number Theory 15(1) (1982), 95-114.[3] James T. Cross, The Euler Φ-function in the Gaussian integers, Amer. Math. Monthly 90(8) (1983), 518-528.[4] J. Díaz Vargas and H. Tapia Recillas, La functión Φ de Euler en los Enteros de Eisenstein-Jacobi, Reportes de Investigación, Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, 1989.[5] F. S. Gillespie, A generalization of Fermat’s little theorem, Fibonacci Quart. 27(2) (1989), 109-115.[6] M. Lassák and S. Porubsky, Fermat-Euler theorem in algebraic number fields, J. Number Theory 60(2) (1996), 254-290.[7] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997.[8] E. H. Moore, A two-fold generalization of Fermat’s theorem, Bull. Amer. Math. Soc. 2(7) (1896), 189-199.[9] I. Niven and L. J. Warren, A generalization of Fermat’s theorem, Proc. Amer. Math. Soc. 8(2) (1957), 306-313.[10] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., John Wiley & Sons Inc., 1991.[11] R. T. Harger and R. M. Smith, A generalization of Fermat’s little theorem, Internat. J. Math. Ed. Sci. Tech. 31(3) (2000), 476-477. Doi:10.1080/00207390050032351.[12] B. Schneier, Applied Cryptography, John Wiley & Sons Inc. 2nd ed., 1966.[13] W. Sierpinski, Elementary Theory of Numbers, Warsaw, 1964.[14] D. R. Stinson, Cryptography Theory and Practice, CRC Press, 1995.[15] A. V. Zarelua, On matrix analogues of Fermat’s little theorem, Math. Notes 79(5-6) (2006), 783-796.