SUMS OF POWERS WITH Fk NUMBERS
We present a slightly different formula for the sums of powers, known as Bernoulli’s formula. In literature, this formula is written using Bernoulli numbers, however, in this paper, we suggest the implementation of Fk numbers instead. The method of obtaining the aforementioned formula is new and this novel approach can be deemed as more natural. We show that the introduction of the sequence Fk is justified by a large number of examples where it can be seen that in applications, it is used exactly through the sequence Fk while Bernoulli's sequence Bk always requires division with k.
sums of powers, Bernoulli’s numbers, Fk numbers.
Received: March 7, 2021; Accepted: April 24, 2021; Published: June 28, 2021
How to cite this article: Aleksa Srdanov, Radiša Stefanović and Nada Ratković Kovačević, Sums of powers with Fk numbers, JP Journal of Algebra, Number Theory and Applications 51(1) (2021), 77-95. DOI: 10.17654/NT051010077
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Johann Faulhaber, Academia Algebrae - Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden, Augspurg, bey Johann Ulrich Schönigs, 1631.[2] Donald E. Knuth, Johann Faulhaber and sums of powers, Math. Comp. 61(203) (1993), 277-294.[3] Laura Elizabeth S. Coen, Sums of Powers and the Bernoulli Numbers, Eastern Illinois University, 1996.[4] J. Bernoulli, Ars Conjectandi, Werke, 3, Birkhäuser, 1975, pp. 107-286 (Original: Basel, 1713).[5] Carl Jacobi, De usu legitimo formulae summatoriae Maclaurinianae, J. Reine Angew. Math. 12 (1834), 263-272.[6] R. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1989.[7] Aleksa Srdanov, Universal formulas for the number of partitions, Proc. Indian Acad. Sci. Math. Sci. 128 (2018), Paper No. 40, 17 pp. https://doi.org/10.1007/s12044-018-0418-z.[8] Aleksa Srdanov, Fractal form of the partition functions AIMS Math. 5(3) (2020), 2539-2568. doi: 10.3934/math.2020167.[9] Aleksa Srdanov, Invariants in partition classes, AIMS Math. 5(6) (2020), 6233-6243. doi: 10.3934/math.2020401.[10] Greg Orosi, A simple derivation of Faulhaber’s formula, Appl. Math. E-Notes 18 (2018), 124-126.[11] Paul Cohen, The independence of the continuum hypothesis, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1143-1148.[12] Kieren MacMillan and Jonathan Sondow, Proofs of power sum and binomial coefficient congruences via Pascal’s identity, Amer. Math. Monthly 118 (2011), 549-551.[13] Nathaniel Larson, The Bernoulli Numbers: A Brief Primer, 2019. Available at: https://www.whitman.edu/Documents/Academics/Mathematics/2019/Larson-Balof.pdf.[14] S. C. Woon, Generalization of a Relation between the Riemann Zeta Function and Bernoulli Numbers, 1998. Available at: http://arxiv.org/abs/math.NT/981214.[15] Arfken George, Mathematical Methods for Physicists, 2nd ed., Academic Press, Inc., 1970.[16] B. C. Berndt, Ramanujan’s Notebooks, Part II, Springer-Verlag, New York, 1989.[17] H. Rademacher, Analytic Number Theory, Springer-Verlag, New York, 1973.[18] B. Mazur, Bernoulli numbers and the unity of mathematics. http://www.math.harvard.edu/mazur/papers/slides.Bartlett.pdf.[19] Friedrich Hirzebruch, Topological methods in algebraic geometry, Reprint of the 2nd, corr. print. of the 3rd ed., Springer-Verlag, Berlin, 1995.[20] H. Tsao, Sums of Powers and Eulerian Number, Mathematical Gasette 95 (2011), 347-349.[21] E. E. Kummer, Über eine allgemeine Eigenschaft der rationalen Entwicklungscoefficienten einer bestimmten Gattung analytischer Functionen, J. Reine Angew. Math. 41 (1851), 368-372. doi: 10.1515/crll.1851.41.368.[22] P. Colmez, Fontaine’s rings and p-adic L-functions, Lecture Notes at Tsinghua University, 2004, pp. 11-12. Available at: https://webusers.imjprg.fr/pierre.Colmez/tsinghua.pdf.[23] Jürgen Neukirch, Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer-Verlag, Berlin, 1999.[24] K. Dilcher, A Bibliography of the Bernoulli Numbers, http://www.mscs.dal.ca/ dilcher/Bernoulli.html.