ON GAUSSIAN FIBONACCI-SYLVESTER-KAC MATRIX
In this paper, we study a new Sylvester-Kac matrix with Gaussian Fibonacci numbers, i.e., Gaussian Fibonacci-Sylvester-Kac matrix. We not only propose two recurrence algorithms for finding the characteristic polynomial of the new matrix but also compute its determinant and the inverse.
determinant, inverse, characteristic polynomial, Gaussian Fibonacci number, Sylvester-Kac matrix.
Received: March 2, 2021; Revised: April 3, 2021; Accepted: April 12, 2021; Published: June 28, 2021
How to cite this article: Zhenyu Guo, Yanpeng Zheng and Zhaolin Jiang, On Gaussian Fibonacci-Sylvester-Kac matrix, JP Journal of Algebra, Number Theory and Applications 51(1) (2021), 27-40. DOI: 10.17654/NT051010027
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] J. J. Sylvester, Théoreme sur les déterminants, Nouvelles Ann. Math., 1854.[2] R. Bevilacqua and E. Bozzo, The Sylvester-Kac matrix space, Linear Algebra Appl. 430 (2019), 3131-3138.[3] R. Oste and J. van der Jeugt, Tridiagonal test matrices for eigenvalue computations: two-parameter extensions of the Clement matrix, J. Comput. Appl. Math. 314 (2017), 30-39.[4] C. M. da Fonseca and E. Kilic, An observation on the determinant of a Sylvester-Kac type matrix, arXiv:1902.07626, 2019.[5] W. Chu, Fibonacci polynomials and Sylvester determinant of tridiagonal matrix, Appl. Math. Comput. 216(3) (2010), 1018-1023.[6] W. Chu and X. Y. Wang, Eigenvectors of tridiagonal matrices of Sylvester type, Calcolo 45(4) (2008), 217-233.[7] C. M. da Fonseca and E. Kilic, A new type of Sylvester-Kac matrix and its spectrum, Linear and Multilinear Algebra (2019), 1-11.[8] F. Holland, T. Laffey and R. Smyth, Problem 12100, Amer. Math. Monthly 126(3) (2019), 280.[9] W. C. Chu, Spectrum and eigenvectors for a class of tridiagonal matrices, Linear Algebra Appl. 582 (2019), 499-516.[10] K. Thomas, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001.[11] N. Muthiyalu and S. Usha, Eigenvalues of centrosymmetric matrices, Computing 48 (1992), 213-218.