SOME ARITHMETICAL PROPERTIES ON HYPERBOLA
We investigate arithmetical properties on the 0-genus algebraic structure of the hyperbola parametrized by and study algebraic and arithmetical properties on the group structure among isomorphisms, integral solutions, and relations between integral solutions and divisors of the parameter n, and present a factorization method.
hyperbola curve, integral points, factorization, isomorphisms.
Received: September 18, 2020; Accepted: November 20, 2020; Published: March 26, 2021
How to cite this article: Gilda Rech Bansimba, Regis Freguin Babindamana and Basile Guy Richard Bossoto, Some arithmetical properties on hyperbola, JP Journal of Algebra, Number Theory and Applications 50(1) (2021), 45-100. DOI: 10.17654/NT050010045
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Régis F. Babindamana and Gilda R. Bansimba, Construction of a new hyperbola group structure, International Journal of Algebra 13(8) (2019), 349-363. https://doi.org/10.12988/ija.2019.9829[2] Emanuele Bellini, Nadir Murru, Antonio J. Di Scala and Michele Elia, Group law on affine conics and applications to cryptography, Elsevier, Applied Mathematics and Computation, July 2020.[3] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing Archive 26(5) (1997), 1484-1509.[4] Carl Pomerance, The Number Field Sieve, Proceedings of Symposia in Applied Mathematics, Volume 48, 1994.[5] Arjen K. Lenstra and H. W. Lenstra, Jr. (eds.), The development of the number field sieve, Lecture Notes in Math., 1554, Springer-Verlag, 1993.[6] C. Pomerance, The quadratic sieve factoring algorithm, Advances in Cryptology, Proc. EUROCRYPT’84’, LNCS 209 (1985), pp. 169-182. Springer-Verlag, Berlin Heidelberg, 1985[7] H. W. Lenstra, Jr. Factoring integers with elliptic curves, Annals of Mathematics, 126 (1987), 649-673.[8] Daniel J. Bernstein, Peter Birkner, Tanja Lange and Christiane Peters, ECM Using EDWARDS Curves, https://eprint.iacr.org/2008/016.pdf[9] Richard P. Brent, Recent Progress and Prospects for Integer Factorization Algorithms, Oxford University Computing Laboratory, Wolfson Building, Parks Road, http://www.comlab.ox.ac.uk[10] Harold M. Edwards, A normal form for elliptic curves, Bulletin of the American Mathematical Society 44(3) (2007), 393-422.[11] V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology-CRYPTO’85, Lecture Notes in Computer Science 218 (1986), 417-426.[12] N. Koblitz, Elliptic curve cryptosystem, Mathematics of Computation 48 (1987), 203-209.[13] S. Goldwasser and J. Killian, Primality testing using elliptic curves, Proceedings of the 18th Annual ACM Symposium of computing, ACM, New York, 1986, pp. 316-329.[14] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics 126 (1987), 649-673.[15] Ranna A. Trivedi and Shailesh A. Bhanotar, Pythagorean Triplets-views, Analysis and classification, IOSR Journal of Mathematics (IOSR-JM) 11(2) (2015), 54-63.[16] Andrew J. Wiles, Modular elliptic curves and Fermat’s last theorem, Annals of Mathematics 141 (1995), 443-551.[17] Leonard E. Dickson, History of The theory of Numbers, Diophantine Analysis Book, Volume II, Chelsea Publishing Company, New York, N.Y., 1971.[18] I. Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory of Numbers Book, John Wiley & Sons, Inc., 1991.[19] Neal Koblitz, A Course in Number Theory and Cryptography, Volume 235, Spring-Verlag, New York, Inc., 1948.[20] Sagemath software, https://www.sagemath.org/download.html.