A CONGRUENCE PROPERTY OF FOURIER COEFFICIENTS FOR MODULAR FORMS
We investigate and propose solutions to some problems posed by Pacetti [16]. Indeed, specific sequences of integers linked to elliptic curves given on the field of rational numbers were of particular interest. These sequences are the coefficients ap, for primes p, of Fourier expansion of the modular forms, associated to the elliptic curves labeled 17a1 and 19a1, respectively, on John Cremona’s Table. Congruence properties of these coefficients were questioned. Based on Eichler-Shimura and Taylor-Wiles theorems, we prove a general congruence relation for coefficients ap. The result allows to compute and gives the distribution of the modular coefficients ap associated to elliptic curves grouped by isogeny classes.
elliptic curves, congruence modulo p, modular coefficients, modular form, isogeny classes.
Received: April 9, 2020; Accepted: June 18, 2020; Published: March 26, 2021
How to cite this article: Laurent Djerassem, Daniel Tieudjo and Marcel Tonga, A congruence property of Fourier coefficients for modular forms, JP Journal of Algebra, Number Theory and Applications 50(1) (2021), 1-17. DOI: 10.17654/NT050010001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] N. Andersen and P. Jenkins, Divisibility properties of coefficients of level p modular functions for genus zero primes, Proceedings of the American Mathematical Society 141 (2013), 41-53.[2] A. F. Arnaud-Rocksandich, There and Back Again: Elliptic curves, Modular forms and L-Functions, HMC Senior Theses, 61, Harvey Mudd College, May 2014.[3] F. Bruzzesi, Elliptic Curves and Modular Curves, ALGANT Master Thesis, Universita degll Studi di Milano-Universitat Duisburg-Essen, July 2018.[4] A. Brumer, A. Pacetti, C. Poor, G. Tornaria, J. Voight and D. S. Yuen, On the paramodularity of typical Abelian surfaces, Algebra and Number Theory 13(5) (2019), 1145-1195.[5] A. Clemm, Modular forms and Weierstrass Mock modular Forms, Mathematics 4(1) (2016), 5. https://doi.org/10.3390/math4010005.[6] B. Conrad, F. Diamond and R. Taylor, Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12(2) (1999), 521-567.[7] J. Cremona, John Cremona’s Table of elliptic curves and their invariants, www.lmfdb.org[8] H. Darmon, Andrew Wile’s Marveillous Proof, Notices of the AMS 64(3) (2017), 209-216.[9] H. Darmon, F. Diamond and R. Taylor, Fermat’s Last Theorem, Current Developments in Mathematics, International Press of Boston 1995.[10] S. Gelbart, Elliptic Curves and Automorphic Representations, Adv. In Math. 21 (1976), 235-292.[11] A. M. Guloglu, F. Luca and A. Yalciner, Arithmetic properties of coefficients of L-functions of elliptic curves, Monatsh Math. 187(2) (2018), 247-273.[12] S. Howe and K. Joshi, Asymptotics of Conductors of Elliptic Curves over 85721-0089, arXiv:1201:4566 v2 [math.NT] 2015.[13] H. Larson and G. Smith, Congruence properties of Taylor coefficients of modular forms, Int. J. Number Theory 10(6) (2014), 1501-1518.[14] J. S. Milne, Modular Functions and Modular Forms (Elliptic Modular Curves), Version 1.31, March 22, 2017 (available at www.jmilne.org/math/).[15] A. Morra, Théorie et pratique de la méthode des points d’Heegner, Mémoire de Master 2, Université de Bordeaux 1, 19 juin 2006.[16] A. Pacetti, Congruence properties of eigenvalues, School and Workshop on Computational Algebra and Number Theory, Trieste, ICTP, June 18-29, 2012.[17] B. Paul, Arithmetic of Hecke eigenvalues of Siegel modular forms, HOMI Bhabha National Institute, PhD Thesis April 2019.[18] T. Saito, Fermat’s Last Theorem, Basic tools, Translations of Mathematical Monographs, vol. 243, American Mathematical Society, Providence, 2013.[19] M. Sghiar, Two simple proofs of Fermat’s Last theorem and Beal conjecture, IOSR Journal of Mathematics 14(6) (2018), 16-18.[20] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, Berlin and New York, 1986.[21] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, Berlin and New York, 1994.[22] S. Thiboutot, Courbes elliptiques, représentations galoisiennes de l’équation x2 + y3 = z5, Mémoire de Master, Faculté des Etudes Supérieures, Université McGill, 1996.