ASYMPTOTIC PROPERTY OF SPECTRAL DENSITY ESTIMATORS OF A CONTINUOUS TIME PROCESS ALMOST PERIODICALLY CORRELATED LOW DEPENDENT BY POISSON
In this paper, we study the spectral density estimation of an almost periodically correlated continuous-time random process using Poisson sampling. Under certain regularity conditions on the weak dependence of such a process, we give an estimator of its spectral density and establish the root-mean-square consistency and the asymptotic normality of this one. Finally, we completed the theoretical study with simulation work.
root-mean-square consistency, asymptotic normality, spectral densities, estimation, Poissonian sampling, weakly dependent process, almost-periodic process, almost-periodically correlated processes.
Received: December 17, 2020; Accepted: January 21, 2021; Published: March 18, 2021
How to cite this article: Sylvestre Placide Ekra and Vincent Monsan, Asymptotic property of spectral density estimators of a continuous time process almost periodically correlated low dependent by Poisson, Far East Journal of Theoretical Statistics 61(2) (2021), 145-189. DOI: 10.17654/TS061020145
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] J. Dedecker, P. Doukhan, G. Lang, R. Léon, S. Louhichi and C. Prieur, Weak Dependence: with Examples and Applications, Vol. 7, Springer, 2007, pp. 153-197.[2] D. Dehay and A. E. Dudek, Bootstrap method for Poisson sampling almost periodic process, J. Time Ser. Anal. 36(3) (2015), 327-351.[3] D. Dehay and A. E. Dudek, Bootstrap method for the second-order analysis of Poisson-sampled almost periodic processes, Electron. J. Stat. 11(1) (2017), 99-147.[4] D. Dehay, A. E. Dudek and M. El Badaoui, Bootstrap for almost cyclostationary processes with jitter effect, Digit. Signal Process. 73 (2018), 93-105.[5] D. Dehay and S. K. Kouakou, Estimation de la densité spectrale d’un champ aléatoire stationnaire continu par échantillonnage poissionnien, 41ème Journées de Statistique, SFdS, Bordeaux, France, 2009.[6] D. Dehay and V. Monsan, Random sampling estimation for almost periodically correlated processes, J. Time Ser. Anal. 17 (1996), 425-446.[7] P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities, Stochastic Process. Appl. 84 (1999), 313-342.[8] P. Doukhan and O. Wintenberger, An invariance principle for weakly dependent stationary general model, Probability and Mathematical Statistics, 2007 (accepted).[9] M. Dugast, Géométrie et topologie des processus périodiquement corrélés induit par la dilation, Thèse, Université de Lyon, 2018.[10] G. R. George and S. C. Prema, Cyclostationary feature detection based blind approach for spectrum sensing and classification, Radioengineering 28 (2019), 298-303.[11] E. Gladyschev, Periodically and almost periodically correlated random processes with continuous time parameter, Theory Probab. Appl. 8 (1963), 173-177.[12] H. L. Hurd and J. P. Leskow, Estimation of the Fourier coefficient functions and their spectral densities for -mixing almost periodically correlated processes, Statist. Probab. Lett. 14 (1992), 299-306.[13] S. Maiz, Estimation et détection de signaux cyclostationnaires, Thèse, Ecole Nationale Supérieure des Mines de Saint-Etienne, Soumis à HAL en 2017, 2014.[14] A. D. A. Mohamad, R. Laurent, S. Anas, A. M. Kamel, E. Erik, D. Thierry and C. Sebastien, Software sensor for airflow modulation and noise detection by cyclostationary tools, Sensors 20(8) (2020), 2414. doi:10.3390/s20082414.[15] A. Napolitano, On cyclostationarity-based signal detection, European Signal Processing Conference, Department of Engineering, University of Napoli “Parthenope”, Italy, 2018.[16] P. Souza, V. Souza and L. F. Silveira, Analysis of spectral sensing using angle-time cyclostationarity, Sensors 19(19) (2019), 4222.https://doi.org/10.3390/s19194222.[17] W. A. Gardner, Introduction to Random Processes with Applications to Signals and Systems, McGraw-Hill, New York, 1990.[18] W. A. Gardner, An introduction to cyclostationary signals, Cyclostationarity in Communications and Signal Processing, W. A. Gardner, ed., IEEE Press, New York, 1994, pp. 1-90.[19] D. Dehay and J. Leskow, Functional limit theory for the spectral covariance estimator, J. Appl. Prob. 33 (1994), 1077-1092.[20] D. J. Daley and D. Vere Jones, A summary of the theory of point processes, Stochastic Point Processes, P. A. W. Lewis, ed., Wiley, New York, 1972, pp. 299-383.[21] H. L. Hurd, Correlation theory for the almost periodically correlated processes with continuous time parameter, J. Multivariate Anal. 37 (1991), 24-45.[22] K. S. Lii and E. Masry, Spectral estimation of time stationary processes from random sampling, Stochastic Process. Appl. 52 (1994), 39-64.