ON GEGENBAUER POLYNOMIALS
In this paper, it is shown that the terms of Gegenbauer polynomial satisfy the Jacobi identity.
Gegenbauer polynomial, Jacobi identity.
Received: November 4, 2020; Accepted: November 17, 2020; Published: November 30, 2020
How to cite this article: U. E. Edeke and N. E. Udo, On Gegenbauer polynomials, Universal Journal of Mathematics and Mathematical Sciences 14(1) (2021), 1-7. DOI: 10.17654/UM014010001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. O. Barut and R. Raczka, Theory of Group Representations and Application, Polish Scientific Publishers, Warsaw, 1980.[2] S. R. Deans, The Radon Transform and Some of its Applications, John Wiley and Sons, New York, 1983.[3] T. Liu and J. He, The Radon transforms on the generalized Heisenberg group, ISRN Math. Anal. 2014, Article ID 490601, 7 pp.[4] M. Ramirez, Simple approach to Gegenbauer polynomials, IJPAM 119(1) (2018), 121-129.[5] U. E. Edeke, O. E. Ntekim and E. I. Enang, On a class of general linear group whose determinant is the same as the trace, IJPAM 106(2) (2016), 565-570.