THE SEMIPRIMENESS OF SEMIGROUP RINGS
The modern theory of linear codes over a finite ring relies heavily on the algebraic structure of the ring of complex-valued functions on a finite ring R. So motivated, this paper applies the theory of semigroup rings to the more general case of K[R], the ring of K-valued functions of finite support over an arbitrary ring R for a field K of characteristic zero. We provide several structural results for K[R], such as a characterization of the semiprimeness of K[R] for commutative R and sufficient conditions for the subring of invariant functions of K[R] to be semisimple and Artinian.
semigroup rings, semiprime, function rings, invariant functions.
Received: December 26, 2020; Accepted: January 16, 2021; Published: February 22, 2021
How to cite this article: Yasuyuki Hirano, Brent Solie and Hisaya Tsutsui, The semiprimeness of semigroup rings, JP Journal of Algebra, Number Theory and Applications 49(2) (2021), 121-138. DOI: 10.17654/NT049010121
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Ian G. Connell, On the group ring, Canad. J. Math. 15 (1963), 650-685.[2] Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971.[3] Yurij A. Drozd and Vladimir V. Kirichenko, Finite-dimensional algebras, Springer-Verlag, Berlin, 1994. Translated from the 1980 Russian original and with an appendix by Vlastimil Dlab.[4] Marcus Greferath and Sergio R. López-Permouth, On the role of rings and modules in algebraic coding theory, Lecture Notes in Pure and Applied Mathematics 24(8) (2006), 205.[5] Marcus Greferath, Cathy McFadden and Jens Zumbrägel, Characteristics of invariant weights related to code equivalence over rings, Des. Codes Cryptogr. 66(1-3) (2013), 145-156.[6] Marcus Greferath, Gary McGuire and Michael E. O’Sullivan, On Plotkin-optimal codes over finite Frobenius rings, J. Algebra Appl. 5(6) (2006), 799-815.[7] Marcus Greferath, Alexandr Nechaev and Robert Wisbauer, Finite quasi-Frobenius modules and linear codes, J. Algebra Appl. 3(3) (2004), 247-272.[8] L. G. Kovács, Semigroup algebras of the full matrix semigroup over a finite field, Proc. Amer. Math. Soc. 116(4) (1992), 911-919.[9] T. Y. Lam, A first course in noncommutative rings,2nd ed., Volume 131 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2001.[10] T. Y. Lam, Corner ring theory: a generalization of Peirce decompositions, I, Algebras, rings and their representations, World Sci. Publ., Hackensack, NJ, 2006, pp. 153-182.[11] Susan Montgomery, Fixed rings of finite automorphism groups of associative rings, Volume 818 of Lecture Notes in Mathematics, Springer, Berlin, 1980.[12] Jan Okniński, Prime and semiprime semigroup rings of cancellative semigroups, Glasgow Math. J. 35(1) (1993), 1-12.[13] Jan Okniński, Prime ideals of cancellative semigroups, Comm. Algebra 32(7) (2004), 2733-2742.[14] Donald S. Passman, Infinite group rings, Pure and Applied Mathematics, 6, Marcel Dekker, Inc., New York, 1971.[15] G. Renault, Algébre non commutative, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1975, Collection Varia Mathematica.[16] Hisaya Tsutsui, Fully prime rings. II, Comm. Algebra 24(9) (1996), 2981-2989.[17] E. I. Zeĺmanov, Semigroup algebras with identities, Sibirsk. Mat. Ž. 18(4) (1977), 787-798, 956.