A CLASS OF TWO FOLDED MIXTURE DISTRIBUTIONS
A class of mixture distributions has been derived which we call two folded mixture distributions. We have derived a class of dual mixture distributions named beta 1st kind mixture of beta 1st kind, beta 2nd kind mixture of beta 2nd kind, normal mixture of normal distribution, lognormal mixture of lognormal distribution, Erlang mixture of Erlang distribution, Laplace mixture of Laplace distribution, Pareto mixture of Pareto distribution, chi-square mixture of chi-square distribution, t mixture of t distribution, F mixture of F distribution, etc. Estimation of unknown parameters along with some characteristics of these distributions is also investigated. Here, various new integral representations of several two folded functions like two folded beta, two folded gamma functions can be obtained using these mixture beta distributions. The estimation of unknown parameters along with some characteristics of these distributions is also given.
methods of moments, mixing distribution, mixtured distribution.
Received: November 25, 2020; Accepted: December 20, 2020; Published: February 8, 2021
How to cite this article: Mian Arif Shams Adnan, Humayun Kiser, Asif Shams Adnan and Silvey Shamsi, A class of two folded mixture distributions, Far East Journal of Theoretical Statistics 61(1) (2021), 75-93. DOI: 10.17654/TS061010075
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] M. A. S. Adnan, H. Kiser, A. S. Adnan and S. Shamsi, A class of folded gamma mixture distributions, Far East J. Theor. Stat. 60(1-2) (2020), 1-23.[2] M. A. S. Adnan and H. Kiser, A class of triple mixture distributions, Far East J. Theor. Stat. 59(2) (2020), 59-79.[3] M. A. S. Adnan and H. Kiser, Various integral representations of the product of gamma functions based on triple mixture distributions, Far East J. Appl. Math. 94(2) (2016), 157-171.[4] M. A. S. Adnan and H. Kiser, A class of F mixture distributions, Journal of Interdisciplinary Mathematics 17(5-6) (2015), 403-422.[5] M. A. S. Adnan and M. Shamsuddin, Various integral representations of beta function, Far East J. Appl. Math. 76(1) (2013), 25-38.[6] M. A. S. Adnan, H. Kiser and M. Shamsuddin, A class of thermostatistical distributions for the kinetic behaviors of gases from distinct genesis, Far East J. Appl. Math. 74(1) (2012), 49-70.[7] M. A. S. Adnan and H. Kiser, A class of Weibull mixture distributions, Journal of Biometrics and Biostatistics 3(2) (2012).[8] M. A. S. Adnan and H. Kiser, A generalization of the family of exponential and beta distributions, Proceedings, JSM 2011, American Statistical Association, 2011, pp. 2336-2347.[9] M. A. S. Adnan and H. Kiser, A class of Rayleigh mixture distributions, Journal of Interdisciplinary Mathematics 14 (2011), 507-522.[10] M. A. S. Adnan and H. Kiser, Some Pareto mixture distributions, Proceedings, JSM 2010, American Statistical Association, 2010, pp. 2982-2996.[11] M. A. S. Adnan and H. Kiser, A two parameter generalized double exponential distribution, Proceedings, JSM 2010, American Statistical Association, 2010, pp. 4247-4261.[12] M. A. S. Adnan and H. Kiser, Some Laplace mixtured distributions, Journal of Applied Statistical Science 17(4) (2009), 549-560.[13] W. R. Blischke, Mixtures of distribution, Classical and Contagious Discrete Distributions, G. P. Patil, ed., Calcutta Statistical Publishing Society, 1963, pp. 351-373.[14] Wallace R. Blischke, Moment estimators for the parameters of a mixture of two binomial distributions, Ann. Math. Statist. 33 (1962), 444-454.[15] Wallace R. Blischke, Estimating the parameters of mixtures of binomial distributions, J. Amer. Stat. Assoc. 59 (1964), 510-528.[16] Chahine, Une Generalization Dela Loi Binomial Negative, Revue De Statistiche Appliquee 13(4) (1965), 33-43.[17] A. C. Cohen, Estimation in mixture of discrete distributions, Proceedings of the International Symposium on Discrete Distributions, Montreal, 1963, pp. 373-378.[18] N. E. Day, Estimating the components of a mixture of normal distributions, Biometrika 56 (1969), 463-474.[19] A. K. Gupta and T. Miyawaki, On a uniform mixture model, Biom. J. 20(7-8) (1978), 631-637. https://doi.org/10.1002/bimj.197800002.[20] Victor Hasselblad, Estimation of parameters for a mixture of normal distributions, Technometrics 8 (1966), 431-444.[21] N. P. Jewell, Mixtures of exponential distributions, Ann. Statist. 10 (1982), 479-484.[22] E. Kacki and W. Krysicki, Parameter estimation of a mixture of two Laplace distributions, Roczniki Polskiego Towarzystwa Matematycznego, Seria I: Peace Matematycznr 11 (1967), 23-31.[23] K. Pearson, Contributions to the Mathematical Theory of Evolution, Phil. Trans. Roy. Soc. A 185 (1894), 71-110.[24] P. R. Rider, The method of moments applied to a mixture of two exponential distributions, Ann. Math. Statist. 32 (1961), 143-147.[25] M. K. Roy, S. Rahman and M. M. Ali, A class of Poisson mixtured distributions, Journal of Information and Optimization Sciences 13 (1992), 207-208.[26] M. K. Roy, Some negative binomial mixtured distributions, Journal of Information and Optimization Sciences 19 (1994), 285-302.[27] M. K. Roy and S. K. Sinha, Negative binomial mixture of normal moment distributions, Metron 3 (1995), 83-92.[28] N. L. Johnson, S. Kotz and A. W. Kemp, Univariate Discrete Distributions, 2nd ed., Wiley, New York, 1992.[29] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, 2nd ed., Volumes 1 and 2, Wiley, New York, 2004.[30] B. Jorgensen, V. Seshadri and G. A. Whitmore, On the mixture of the inverse Gaussian distribution with its complementary reciprocal, Scand. J. Statist. 18 (1991), 77-89.