BAYESIAN ESTIMATION OF SCALE PARAMETER OF FRECHET DISTRIBUTION
In this paper, the Frechet distribution is considered for Bayesian analysis. The expressions for Bayes estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions by using quasi and gamma priors.
Frechet distribution, Bayesian method, quasi and gamma priors, squared error, precautionary, entropy, K-loss, Al-Bayyati’s loss functions.
Received: January 8, 2021; Accepted: January 15, 2021; Published: February 8, 2021
How to cite this article: Arun Kumar Rao and Himanshu Pandey, Bayesian estimation of scale parameter of Frechet distribution, Far East Journal of Theoretical Statistics 61(1) (2021), 49-59. DOI: 10.17654/TS061010049
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications, World Scientific, 2000.[2] P. L. Ramos, Francisco Louzada, Eduardo Ramos and Sanku Dey, The Frechet distribution: estimation and application - an overview, Journal of Statistics and Management Systems, 2019. doi:10.1080/09720510.2019.164500.[3] A. Zellner, Bayesian estimation and prediction using asymmetric loss functions, J. Amer. Stat. Assoc. 91 (1986), 446-451.[4] A. P. Basu and N. Ebrahimi, Bayesian approach to life testing and reliability estimation using asymmetric loss function, J. Statist. Plann. Inference 29 (1991), 21-31.[5] J. G. Norstrom, The use of precautionary loss functions in risk analysis, IEEE Trans. Reliab. 45(3) (1996), 400-403.[6] R. Calabria and G. Pulcini, Point estimation under asymmetric loss functions for left truncated exponential samples, Comm. Statist. Theory Methods 25(3) (1994), 585-600.[7] D. K. Dey, M. Ghosh and C. Srinivasan, Simultaneous estimation of parameters under entropy loss, J. Statist. Plann. Inference 15 (1986-1987), 347-363.[8] D. K. Dey and Pei-San Liao Liu, On comparison of estimators in a generalized life model, Microelectron. Reliab. 32(1-2) (1992), 207-221.[9] M. T. Wasan, Parametric Estimation, McGraw-Hill, New York, 1970.[10] H. N. Al-Bayyati, Comparing methods of estimating Weibull failure models using simulation, Ph.D. Thesis, College of Administration and Economics, Baghdad University, Iraq, 2002.