EISENSTEIN POLYNOMIALS DEFINING CYCLIC p-ADIC FIELDS WITH MINIMAL WILD RAMIFICATION
Let p be a prime, the field of p-adic numbers, m a positive integer such that and is an Eisenstein polynomial of degree mp. We give necessary and sufficient conditions on the coefficients of for its Galois group to be cyclic of order mp.
Eisenstein polynomials, p-adic fields, cyclic, totally ramified extensions.
Received: January 2, 2021; Accepted: January 15, 2021; Published: January 25, 2021
How to cite this article: Chad Awtrey and D. Haydn Stucker, Eisenstein polynomials defining cyclic p‑adic fields with minimal wild ramification, JP Journal of Algebra, Number Theory and Applications 49(1) (2021), 93-100. DOI: 10.17654/NT049010093
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Chad Awtrey and Briana Brady, Automorphisms of 2-adic fields of degree twice an odd number, JP J. Algebra Number Theory Appl. 44(2) (2019), 201-210.[2] Chad Awtrey, Peter Komlofske, Christian Reese and Janaé Williams, On Galois p-adic fields of p-power degree, JP J. Algebra Number Theory Appl. 41(2) (2019), 275-287.[3] Helmut Hasse, Number theory, German edition, Classics in Mathematics, Springer-Verlag, Berlin, 2002, Reprint of the 1980 English edition [Springer, Berlin; MR0562104 (81c:12001b)], Edited and with a preface by Horst Günter Zimmer, MR 1885791[4] Akram Lbekkouri, On the construction of normal wildly ramified extensions over Arch. Math. (Basel) 93(4) (2009), 331-344. MR 2558526[5] Eckart Maus, On the jumps in the series of ramifications groups, Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969), 1971, pp. 127-133. Bull. Soc. Math. France, Mém. 25. MR 0364194[6] Maurizio Monge, Determination of the number of isomorphism classes of extensions of a p-adic field, J. Number Theory 131(8) (2011), 1429-1434. MR 2793885[7] Maurizio Monge, A characterization of Eisenstein polynomials generating extensions of degree and cyclic of degree over an unramified p-adic field, J. Théor. Nombres Bordeaux 26(1) (2014), 201-231. MR 3232772[8] Maurizio Monge, A family of Eisenstein polynomials generating totally ramified extensions, identification of extensions and construction of class fields, Int. J. Number Theory 10(7) (2014), 1699-1727. MR 3256847[9] Öystein Ore, Abrib einer arithmetischen Theorie der Galoisschen Körper, Math. Ann. 102(1) (1930), 283-304. MR 1512578[10] Sebastian Pauli and Xavier-Francois Roblot, On the computation of all extensions of a p-adic field of a given degree, Math. Comp. 70(236) (2001), 1641-1659 (electronic). MR 1836924 (2002e:11166)[11] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979, translated from the French by Marvin Jay Greenberg. MR 554237 (82e:12016)[12] Manabu Yoshida, An ultrametric space of Eisenstein polynomials and ramification theory, Proc. Amer. Math. Soc. 140(12) (2012), 4141-4151. MR 2957204