[1] K. Abbaoui and Y. Cherruault, The decomposition method applies to the Cauchy problem, Kybernetes Flight 28(1) (1999), 68-74.
[2] Bakari Abbo, Nouvel algorithme numérique de résolution des équations différentielles ordinaires (EDO) et des équations aux dérivées partielles nonlinéaires, Thèse de Doctorat Unique Université de Ouagadougou, Janvier 2007.
[3] Bakari Abbo, N. N’garsta, B. Mampassi, B. Some and Longin Some, A new approach of the Adomian algorithm for solving nonlinear partial or ordinary differential equations, Far East J. Appl. Math. 23(3) (2006), 299-312.
[4] Barro Genevieve, So Ousseni, Konfe Balira and B. Some, Solving the Cauchy problem for quasilinear equation with power law nonlinear by the Adomian decomposition method (ADM), Far East J. Appl. Math. 17(3) (2004), 277-285.
[5] B. Mampassi, B. Saley and B. Some, Solving some nonlinear reaction-diffusion equations using the new Adomian decomposition method, ADJM 1(1) (2003), 1-9.
[6] S. Khelifa, Equations aux dérivées partielles et méthode décompositionnelle d’Adomian, Thèse de Doctorat de l’Université de Sciences et de la Technologie Houari Boumedienne, 30 Septembre, 2002.
[7] Pare Youssouf, Saley Bisso, So Ousseni and Blaise Some, A numerical method for solving Cauchy evolution problem of partial differential equations (PDEs) for several variables, Inter. J. Numer. Meth. Appl. 1(1) (2009), 87-100.
[8] Pare Youssouf, Bassono Francis, Bakari Abbo and Blaise Some, Generalisation of SBA (Some Blaise-Abbo) algorithm for solving Cauchy nonlinear PDE (partial differential nonlinear equation) in n (n ≥ 2) dimension of space, Adv. Differential Equations and Control Processes 4(2) (2009), 79-94.
[9] Youssouf Pare, Abbo Bakari, Rasmane Yaro and Blaise Some, Solving first kind Abel integral equations using the SBA numerical method, Nonl. Analysis and Differential Equations 1(3) (2013), 115-128.
[10] Bakari Abbo, Abba Danna, Pare Youssouf and Blaise Some, Extension of the new iterative approach of Adomian algorithm to partial differential equations (PDEs) strongly nonlinear with initial and boundary conditions, Far East J. Math. Sci. (FJMS) 75(2) (2013), 245-255. |